FINAL EXAM (total 100 points) Electromagnetics (PHYS-4211)

1) (25 points) A loop of radius $r_2=0.1$ m is placed in the centre of a larger loop $r_1=1$ m such that they both lie in the same plane. At time t=0 current I_1 begins to flow in the larger loop. The current $I_1(t)$ increases uniformly with time at the rate of a=10A/s for some time T. After that $I_1(t)$ stabilizes.

- Determine the magnitude of e.m.f. induced in the smaller loop.
- What is the magnitude and direction of current in the smaller loop, provided it contains the resistor $R=3\Omega$.
- Plot the time evolution of the current in the smaller loop.

Note: You can neglect non-uniformity of the magnetic field within the smaller loop.

I1(+)=const I1=at R In(+)=coust 12 0 Ł Г $I_1(t)$ IZ O Т t

2) (25 points) A plane electromagnetic sinusoidal wave is travelling in the direction $-\hat{\mathbf{x}}$; its frequency is 100 MHz; the electric field is perpendicular to the $\hat{\mathbf{z}}$ direction.

- Write formulas for $\vec{E}(t)$ and $\vec{B}(t)$ that specify such a wave.
- Determine the wave length λ .
- Find the amplitudes E_0 and B_0 assuming that the power density carried by this electromagnetic radiation is 100 W/m².

3) (25 points) An electron with the initial kinetic energy of $E_k = 10$ keV is brought to a complete stop as a result of uniform deceleration at the distance of 20 Å.

- Determine the amount of electromagnetic energy emitted.
- What is the fraction of kinetic energy converted into the electromagnetic radiation?

Note: Neglect relativistic effects.

4) (25 points) Photons generated by a monochromatic light source incident the structure as shown on the figure (the distances represent the optical path length). The reflection probability at the glass/air interface equals 0.04.

- Determine the probability of light to be transmitted through the structure.
- Support your calculations my the arrow diagram.

Note: Neglect multiple reflections.

Hint: Transmitted photons are those, which are not reflected (sounds trivial, but it can useful).

