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ABSTRACT: The low ionization energy of an A site molecule is a very important factor,
which determines the thermodynamical stability of APbI3 hybrid halide perovskites, while
the size of the molecule governs the stable phase at room temperature and, eventually, the
band gap. It is challenging to achieve both a low ionization energy and the reasonable size
for the PbI3 cage to circumvent the stability issue inherent to hybrid halide perovskites.
Here we propose a new three-membered charged ring radical, which demonstrates a low
ionization energy that renders a good stability for its corresponding perovskite and a
reasonable cation size that translates into a suitable band gap for the photovoltaic
application. We use ab initio calculations to evaluate a polymorphism of the crystal
structure of the proposed hybrid halide perovskite, its stability, and electronic properties
in comparison with the mainstream perovskites, such as the methylammonium and
formamidinium lead iodide.

During the past 10 years, hybrid halide perovskites
increasingly catch researchers’ attention as the absorber

layers in photovoltaics.1−5 Favorable electronic properties and a
low-cost fabrication method give hybrid halide perovskites an
advantage over the traditional silicon. One drawback of hybrid
halide perovskites is their instability. The hybrid halide
perovskites easily decompose under the influence of high
temperature, oxygen, water, and even UV light.6−8 Zhang et al.9

pointed out that the instability of methylammonium (MA) lead
iodide is intrinsic due to the similar total energies of the
reactant and products obtained from the density functional
theory10 (DFT) calculation. To commercialize the hybrid
halide perovskite photovoltaics, the stability issue should be
resolved.
The improvements of device architectures are proposed to

stabilize the perovskite photovoltaics.3,11−13 However, the
power conversion efficiencies still decrease by 60% of the
initial value after 1100 h,14 which is far from silicon solar panels
that come on today’s market with a 25-year long performance
warranty. The nature of instability of hybrid halide perovskite
cannot be eliminated. We propose a new perovskite material
with a highly unfavorable decomposition reaction enthalpy,
which should stabilize it against degradation.
Hybrid halide perovskite structures discussed here are

considered in the form of APbI3. Here A stands for an organic
cation in the lead iodide framework. On the basis of our recent
paper, the ionization energy of the molecule on A site (in
addition to its size) can be an important factor that determines
the stability of perovskites.15 A lower ionization energy of the
cation favors a more stable perovskite structure.
Kieslich et al.16 proposed nitrogen-based cations, which were

not used in perovskites before. From this group, an azetidinium

radical (CH2)3NH2 is promising due to its compact structure.
This four-membered ring cation is larger than MA cation but
slightly smaller than the formamidinium HC(NH2)2. Recently,
the azetidinium lead iodide (CH2)3NH2PbI3 was successfully
synthesized.17 The crystal structure of quasicubic
(CH2)3NH2PbI3 is shown in Figure 1b. Pering et al.17 reported
that (CH2)3NH2PbI3 demonstrates a very good stability when
soaked in water in contrast with the MA lead iodide
CH3NH3PbI3. This observation correlates with the ionization
energy of the (CH2)3NH2 radical being 0.4 eV below that of
MA. However, the wide band gap of 2.15 eV for
(CH2)3NH2PbI3 is not promising for photovoltaics.17

Interestingly, there are also three-membered rings,18 of which
the aziridinium radical (CH2)2NH2 is a promising candidate to
be used as the organic cation at A site of hybrid halide
perovskites. Figure 1a illustrates a proposed quasicubic phase of
(CH2)2NH2PbI3. This three-membered ring cation is only
slightly larger than MA. As we will show below, the ionization
energy of (CH2)2NH2 is also much lower than that of MA. This
fact implies that aziridinium lead iodide (CH2)2NH2PbI3 might
be stable and suitable for photovoltaic applications. Here we
discuss the structural stability and electronic properties of the
new perovskite (CH2)2NH2PbI3. We also compare relevant
electronic properties between (CH2)2NH2PbI3, CH3NH3PbI3,
and (CH2)3NH2PbI3.
Formability of inorganic perovskite structures can be

rationalized via geometrical factors such as the Goldschmidt’s
tolerance factor19 and Pauling’s octahedral factor.20 To
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calculate the geometrical factors of hybrid halide perovskites,
the effective organic cation radii are estimated as proposed by
Kieslich et al.16 The effective radii of three- and four-membered
ring cations are listed in Table 1 along the side with the

representative organic and inorganic cations. The size of cyclic
cations is between that of CH3NH3 and HC(NH2)2. The cation
effective radii are used to evaluate the Goldschmidt’s tolerance
factor t for APbI3 perovskite structures (Table 1). The
tolerance factor of (CH2)3NH2PbI3 is too large to form a
cubic or tetragonal structure (t > 0.9622), whereas the tolerance
factor for (CH2)2NH2PbI3 is within the perovskite formability
limits.
According to our previous study,15 the radical ionization

energy at A site has an effect on the final reaction enthalpy of
hybrid halide perovskites. The lower ionization energy, the
more stable is the structure. Results in Table 1 demonstrate
that both radicals (CH2)2NH2 and (CH2)3NH2 have lower
ionization energies than MA. Their values are close to the
ionization energy of Cs, which is the lowest one in the periodic
table. This result suggests that (CH2)2NH2PbI3 and
(CH2)3NH2PbI3 should be more stable than CH3NH3PbI3.
To further investigate the stability of (CH2)2NH2PbI3, we

use the following decomposition reaction equation

→ +(CH ) NH PbI (CH ) NH I PbI2 2 2 3 2 2 2 2 (1)

and the corresponding enthalpy

Δ = −

−

H E E

E

[(CH ) NH PbI ] [(CH ) NH I]

[PbI ]
r tot 2 2 2 3 tot 2 2 2

tot 2 (2)

The total energies Etot of products and the reactant are
evaluated using DFT. If the total energy of the products is
lower than the total energy of the reactant, the perovskite
structure is deemed unstable.9 This approach ignores finite
temperature components of the free energy, which is on the
order of −0.1 eV for CH3NH3PbI3.

25

As a benchmark, we analyzed the stability and polymorphism
of CH3NH3PbI3. Among various polymorphs, we include a
possibility for a hexagonal phase because perovskite structures
with large cations (t > 0.96) have a tendency to adapt a
hexagonal structure. PBE is first used as the exchange-
correlation functional. Results listed in Table 2 suggest that
the hexagonal structure of CH3NH3PbI3 has the lowest total
energy at 0 K. This finding contradicts experimental data,26−28

according to which CH3NH3PbI3 adapts the orthorhombic

Figure 1. Quasicubic crystal structures of cyclic ring-based perovskites: (a) aziridinium lead iodide(CH2)2NH2PbI3 and (b) azetidinium lead iodide
(CH2)3NH2PbI3.

Table 1. Geometrical Factors of Selected Perovskites and
Calculated Ionization Energies of Corresponding A Site
Cations

ionization energy
(eV)

radical A
A+ cation radius

(pm)
tolerance factor for

APbI3 DFTa exp.

Cs 181 0.81 3.85 3.8923

CH3NH3 215 0.91 4.36 4.30 ± 0.124

(CH2)2NH2 227 0.93 4.07
(CH2)3NH2 250 0.98 3.96
HC(NH2)2 264 1.01 4.18

aIonization energies are obtained from the DFT−PBE (Perdew−Bur-
ke−Ernzerhof)21 total energy difference of cations and neutral radicals
including the vibrational zero-point energy. Table 2. Polymorphism of Hybrid Halide Perovskites

Predicted Using DFT with and without the van der Waals
Correction

PBE PBE+vdW(D3)

compound phase
Etot

(meV)
ΔHr
(meV)

Etot
(meV)

ΔHr
(meV)

CH3NH3PbI3 cubic 111 71 122 160
tetragonal 79 39 44 82
orthorhombic 58 18 0 38
hexagonal 0 −40 11 49

(CH2)2NH2PbI3 cubic 107 −44 67 −81
tetragonal 141 −10 54 −93
orthorhombic 140 −12 63 −84
hexagonal 0 −151 0 −147

(CH2)3NH2PbI3 cubic 174 −51 73 −199
tetragonal 194 −31 99 −173
orthorhombic 171 −54 71 −201
hexagonal 0 −225 0 −272

HC(NH2)2PbI3 cubic 296 179 238 266
tetragonal 142 25 50 79
orthorhombic 113 −4 32 61
hexagonal 0 −117 0 29

CH3NH3PbBr3 cubic 71 13
orthorhombic 0 −58

CH3NH3PbCl3 cubic 68 −41
orthorhombic 0 −109
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structure below 162.2 K. Recently, a theory-based study
reported similar controversial results on the hexagonal
CH3NH3PbI3 to have the lowest total energy and predicted it
as a stable low-temperature phase.29 However, we are inclined
to think that the hexagonal phase of CH3NH3PbI3 is probably a
metastable phase. It is the choice of the exchange-correlation
functional that is a possible reason for DFT failure to accurately
predict the correct polymorphism transformation order of
CH3NH3PbI3. Thus different exchange-correlation functionals
are employed to evaluate the polymorphism transformation of
CH3NH3PbI3 (see Figure 2).

Figure 2 illustrates the total energies of different phases of
CH3NH3PbI3 obtained using PBE, PBE+ZPE (zero-point
energy correction), PBE+vdW(D3),30 PBEsol,31,32 and
SCAN33 exchange-correlation functionals. Bokdam et al.34

proposed SCAN as the superior exchange-correlation func-
tional for structural simulations of hybrid halide perovskites.
However, all methods except for the PBE+vdW(D3) favor the
hexagonal structure at low temperature. The result indicates the
importance of dispersion interactions to stabilize the low-
temperature orthorhombic CH3NH3PbI3. Li and Rinke35

pointed out that the van der Waals (vdW) correction is also
essential to obtain an accurate lattice constant of hybrid halide
perovskites. It should be noted that Thind et al.29 performed
similar calculations including vdW correction, and their results
showed that the hexagonal phase still has the lowest total
energy among all of the phases, which contradicts our results.
We suspect that the reason for discrepancy can be a suboptimal
structure of the orthorhombic phase used by Thind et al.29

Because van der Waals effects are important for the
polymorphism of CH3NH3PbI3, the same can be extended
for other types of hybrid halide perovskites. Thus we focus on
results obtained with PBE+vdW(D3) exchange-correlation
functional in the remaining part of the paper. Table 2 lists
the results of polymorphism prediction and corresponding
decomposition reaction enthalpies for the perovskites of
interest here. It is noticed that except for CH3NH3PbI3, all of
the other perovskites favor the hexagonal structures as the low-
temperature stable phase. This trend can be attributed to a
greater size of organic cations involved. For CH3NH3PbI3 and
HC(NH2)2PbI3, ΔHr values are weakly positive, which
contradicts formability of those compounds. The final temper-

ature contribution will lower the free energy by ∼0.1 eV,25

making their formability feasible.
Recent comparative studies of stability among CH3NH3PbX3

perovskites with X = Cl, Br, and I reported that a higher
stability can be achieved by switching halide from I to Br and
Cl.8,9,36−39 Our calculated stability trend of CH3NH3PbX3 is
consistent with those observations. The lower reaction
enthalpies of (CH2)2NH2PbI3 suggest that the stability of
(CH2)2NH2PbI3 will be superior to CH3NH3PbCl3 (Table 2).
Moreover, Tenuta et al.25 indicated that the degradation of

APbI3 perovskites in the moist environment is governed by the
solubility of a AI salt. The saturation concentration cs of AI in
the solvent exponentially depends on the reaction enthalpy
given by eq 2. Considering a low reaction enthalpy of
(CH2)3NH2PbI3, its decomposition via solvation of
(CH2)3NH2I in water will be hindered. This prediction is
consistent with the exceptional moisture stability of
(CH2)3NH2PbI3.

17

The solubility of AIm salts can be captured by evaluating an
enthalpy of the following reaction

→ ++ −A A mI (s) (aq) I (aq)m
m

(3)

Energies of the corresponding products are evaluated using
implicit solvation model of VASPsol40,41 and the solvation
enthalpies are presented in Table 3. The lower enthalpy favors

solubility of the salt. The high solubility of CH3NH3I in water
and the low solubility of PbI2 correlate with the enthalpy values
listed in Table 3. The four discussed AI salts have similar
solvation enthalpies ranging from 0.35 to 0.45 eV. It suggests a
similar solubilities of the AI salts. Therefore, the proposed
perovskite (CH2)2NH2PbI3 should be less prone to decom-
position via dissolution in water due to its higher decom-
position reaction enthalpy (Table 2) rather than differences in
solubility of the salt.
We compared the stability of the proposed cation with other

mainstream cations using the following decomposition path-
way, taking (CH2)2NH2

+ as an example

+ → ++ −(CH ) NH (aq) I (aq) (CH ) NH(g) HI(g)2 2 2 2 2
(4)

The corresponding enthalpies are listed in Table 4. Positive
enthalpies indicate the discussed four cations are stable in an
aqueous solution.

Figure 2. Polymorphism of CH3NH3PbI3 with different exchange-
correlation functionals. The origin of the energy scale is set at the
lowest energy structure for each computational technique used.

Table 3. Solvation Enthalpy ΔH of Iodide Salts in Water

salt ΔH (eV)

CH3NH3I 0.45
(CH2)2NH2I 0.45
(CH2)3NH2I 0.39
HC(NH2)2I 0.35
PbI2 2.38

Table 4. Decomposition Enthalpy of Cations via a Proton-
Exchange Reaction (eq 4)

cation A+ ΔH (eV)

CH3NH3
+ 1.47

(CH2)2NH2
+ 1.25

(CH2)3NH2
+ 1.42

HC(NH2)2
+ 1.89
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For the photovoltaic application of (CH2)2NH2PbI3, it is
crucial that its structure adapts a cubic phase at room
temperature. The Goldschmidt’s tolerance factors of
(CH2)2NH2PbI3 and CH3NH3PbBr3 are the same, 0.93.36

Because CH3NH3PbBr3 prefers a cubic structure at the room
temperature,26,27 we can expect that (CH2)2NH2PbI3 will
exhibit a similar polymorphism as a function of temperature.
Besides, we found that the high-temperature phase transition
point versus the energy difference between the low-temperature
and high-temperature phases follows a linear trend (see Figure
3). From Figure 3, energy difference between cubic and

hexagonal structures of (CH2)2NH2PbI3 is 67 meV, which is
close to the energy difference of 68 meV between cubic and
orthorhombic structures of CH3NH3PbCl3. The tetragonal
CH3NH3PbCl3 transits to a cubic phase at 190 K. We expect
(CH2)2NH2PbI3 to have similar transition behavior and to
adapt the cubic phase above 190 K.
Until now, we found that the (CH2)2NH2PbI3 perovskite

solar cells should be more stable than CH3NH3PbI3 and
HC(NH2)2PbI3. The key question that remains unanswered is

whether the proposed perovskite structure can serve as a solar
cell absorber material. Here we report the band gap for the
hypothetical (CH2)2NH2PbI3 obtained on the framework of
GW approximation, taking into account relativistic effects. It is
known that band gap is sensitive to the structural properties.
We found that the PBE+vdW(D3), PBEsol, and SCAN
exchange-correlation functionals can provide an accurate
prediction for the lattice constants (see the Supporting
Information). Here we continue to use PBE+vdW(D3)
optimized perovskite structures to remain consistent with the
section on stability calculations. Results for band gaps obtained
using PBE+vdW(D3) exchange-correlation functional with and
without the spin-orbit coupling (SOC) are shown in Table 5.
It is well known that DFT calculations with SOC grossly

underestimate the band gap of perovskites.43 In Table 5, the
calculated band gaps with PBE+vdW(D3)+SOC are ∼1 eV
lower than the result without SOC. Band gaps increase from
cubic phase to hexagonal phase. Polymorphs of
(CH2)3NH2PbI3 demonstrate the largest band gaps among
the four perovskites studied here. Band gaps of different
phases of (CH2)2NH2PbI3 lie between CH3NH3PbI3 and
HC(NH2)2PbI3. It is obvious that hexagonal phases show much
large band gaps than perovskite phases. Thus the hexagonal
phase around room temperature is not desirable when aiming
at photovoltaic applications.
Figure 4 shows a relativistic band structure of quasicubic

(CH2)2NH2PbI3. The fundamental band gap is near R-point of
the Brillouin zone. The presence of a Rashba splitting is
noticeable at the vicinity of the band extrema; however, its
magnitude is heavily reduced when compared with the Rashba
splitting at the CH3NH3PbI3 band edges.44−47 The Rashba
splitting in hybrid halide perovskites originates from the strong
spin−orbit interaction and distortions in the Pb-centered
octahedron.46,47 A more centrosymmetric PbI3 cage of the
quasicubic structure and its larger volume can be a reason for
the reduced Rashba splitting in (CH2)2NH2PbI3.
The Rashba splitting in hybrid halide perovskites introduces

an effectively indirect band gap, which prolongs the carrier
lifetime.46,48 We expect the reduced Rashba splitting in
(CH2)2NH2PbI3 not to impede its power conversion efficiency
for photovoltaic applications, because a similar weak splitting
can be found in the band structures of HC(NH2)2PbI3.

49

Figure 3. Correlation between the high-temperature phase-transition
point and the energy difference between the low-temperature phase
and high-temperature phase. The linear line is a guide to the eye.
High-temperature transition temperatures are taken from refs 26, 27,
and 42.

Table 5. Band Gaps (eV) of Hybrid Halide Perovskites Prediction with PBE+vdW(D3) and PBE+vdW(D3)+SOC

compound phase PBE+vdW(D3) PBE+vdW(D3)+SOC

CH3NH3PbI3 cubic 1.44 0.38
tetragonal 1.51 0.76
orthorhombic 1.72 0.86
hexagonal 2.53 2.20

(CH2)2NH2PbI3 cubic 1.35 0.36
tetragonal 1.58 0.62
orthorhombic 1.53 0.58
hexagonal 2.74 2.35

(CH2)3NH2PbI3 cubic 1.56 0.54
tetragonal 1.61 0.64
orthorhombic 1.71 0.67
hexagonal 2.69 2.31

HC(NH2)2PbI3 cubic 1.34 0.33
tetragonal 1.60 0.67
orthorhombic 1.66 0.67
hexagonal 2.52 2.20
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Recently, Yang et al.5 fabricated formamidinium-lead-halide-
based perovskite solar cells with a certified 22.1% power
conversion efficiency.
It is well known that a first-principles GW approximation

with SOC can accurately predict the band gaps of hybrid halide
perovskites.43,45 First, we used a single-shot G0W0 approx-
imation with SOC to evaluate the band gaps of quasicubic
phases for perovskites of interest (Table 6). Next, we carried
out a partially self-consistent calculation by performing four
iterations of G only (referred to as GW0). The single-shot G0W0
method gave the best match of band gaps with the experimental
values (Table 6). On the basis of this Table, we found that the
band gap of quasicubic (CH2)2NH2PbI3 is 0.17 eV lower than
quasicubic CH3NH3PbI3 and 0.09 eV higher than quasicubic
HC(NH2)2PbI3. This result suggests that (CH2)2NH2PbI3 may
offer a superior utilization of the Sun’s spectrum than
CH3NH3PbI3.
To summarize, we used first-principles calculations to predict

structure and characterize stability and electronic properties of
hybrid halide perovskites. The PBE exchange-correlation
functional was used to evaluate the ionization energy of
different cations. The polymorphism of perovskites is best
captured when van der Waals correction is included at the PBE
+vdW(D3) level to accurately predict the order of phases. An
implicit solvation model was used to describe the interaction
between a solute and solvent (water) when evaluating solubility
of perovskite decomposition products. The electronic band
structure and Rashba splitting effect are captured through a
relativistic calculation at the PBE level. To estimate the band
gaps of perovskites, we used a quasiparticle GW approximation
considering the spin−orbit interaction, which gives the most
accurate results compared with experimental data. As a result,
we proposed a three-membered cyclic organic cation-based
hybrid halide perovskite (CH2)2NH2PbI3, which has a potential
to be used as the absorber material for photovoltaics. The low

ionization energy of organic radical (CH2)2NH2 decreases the
reaction enthalpy of forming the corresponding perovskite. It
suggests that this lower reaction enthalpy renders a much better
stability of (CH2)2NH2PbI3 than CH3NH3PbI3 and
HC(NH2)2PbI3. The appropriate cation radius of (CH2)2NH2
for the PbI3 framework and a low-energy difference between
high-temperature and low-temperature phases make
(CH2)2NH2PbI3 transfer to a cubic phase feasible below the
room temperature. Relativistic band structure plot demon-
strates the existence of a Rashba splitting in (CH2)2NH2PbI3,
albeit less prominent than in CH3NH3PbI3. The Rashba
splitting will allow (CH2)2NH2PbI3 to form an indirect band
gap near R-point in the Brillouin zone and benefit from an
enhanced charge-carrier lifetime. GW calculations suggest that
the cubic phase of (CH2)2NH2PbI3 has an even lower band gap
of 1.49 eV than CH3NH3PbI3, thereby making the former
perovskite a suitable absorber material for solar cells.
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