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a b s t r a c t

We present a module that enables computation of polarization using density functional theory based
on the full potential linearized augmented plane wave package WIEN2k. The theoretical background
of deriving microscopic polarization of materials using the modern theory of polarization (geometric
Berry phase approach) is reviewed. The software is validated and then applied to determine spontaneous
polarization and Born effective charges of several crystal structures, which are commonly studied
theoretically and experimentally.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

First-principle microscopic theories, such as the density func-
tional theory (DFT), play a major role in the development of
parameter-free models that establish a relation between atomic
structure and material properties using a minimum or no ex-
perimental input at all. Combined with the recent advances in
high-performance computing, this development opens new op-
portunities in exploring novel materials and understanding their
properties [1,2]. In particular, the ability of DFT to capture micro-
scopic polarization [3–5] enables calculation of the related mate-
rial properties, such as spontaneous polarization and Born effective
charge [4], permittivity [6], pyroelectric coefficient [7], and piezo-
electric tensor [8,9].

According to themodern theory of polarization, the polarization
of amaterial is not a bulk property and it is ill defined [5,7]. Instead,
thematerial properties are related to the change of polarization1P
in response to an external perturbation [7]

1P = P(1) − P(0) = Ω−1


dt

cell

dr j(r, t), (1)

where j(r, t) is the local transient current density resulting from a
charge redistribution inside the bulk unit cell. The polarization of
a given state consists of two components: ionic and electronic

P = Pion + Pel. (2)
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The calculation of the ionic contribution is straightforward; it is
based on the position of atomic nuclei and the corresponding ionic
charges [5]. The electronic part is related to the spatial distribution
of the electron density [7], which can be expressed in terms of a
geometric phase (Berry phase) [3,10].

The calculation of polarization using the Berry phase is
now implemented in major solid-state DFT packages, such as
ABINIT [11] and VASP [12], which belong to the plane wave
family. To the best of our knowledge, only one successful
realization of the Berry phase approach using the all-electron full-
potential linearized augmented plane wave (LAPW) method has
been reported so far [8]. However, the package is not available for
external users.

The purpose of this communication is to present a new
software BerryPI that extends the capability of the popular all-
electron full-potential DFT package WIEN2k [13] to calculation of
polarization in solids using the Berry phase approach. BerryPI
also relies on the WIEN2WANNIER [14] program in computing of
overlapmatrices as described below. As an example, we calculated
the spontaneous polarization and Born effective charges of several
perovskite, zinc-blende and rock-salt structures and compare the
results with experimental data, pseudopotenial calculations and
other DFT results reported in literature.

2. Method

We consider a periodic insulating crystal, which is represented
by a unit cell with N atoms and M doubly-occupied bands (non-
spin-polarized calculation is considered). It is assumed that the
electronic ground state can be described by a single-particle
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mean-field Hamiltonian as in the density-functional theory. The
eigenstates of this Hamiltonian are the Bloch functions

ψnk(r) = unk(r)eik·r, (3)

which are characterized by the band-index n and the wave vector
k. The cell-periodic complex amplitude unk(r) = unk(r + R)
remains invariant for any lattice vector R.

The total microscopic polarization of such a system is given
by [3]

P =
e
Ω

atoms
s

Z ion
s rs −

2ei
(2π)3

occ.
bands
n


BZ

dk⟨unk|∇k|unk⟩, (4)

whereΩ is the simulation cell volume, e is the elementary charge,
Z ion
s is the ionic charge represented by the number of valence

electrons in the atom s and rs is its position vector. The factor of 2 in
the numerator corresponds to the band occupancy. The integration
in Eq. (4) is performed over the Brillouin zone (BZ), and the
integrand is closely related to the geometrical phase change [10]

dϕn = −i⟨unk|∇k|unk⟩ · dk = −i ln⟨unk|un(k+dk)⟩. (5)

After summation over all occupied bands, the integral in Eq. (4)will
represent an average phase acquired by system wavefunctions,
i.e. the electronic phase. This phase value has the uncertainty of
an integer multiple of 2π .

The Cartesian α component of total polarization of a state can
be expressed in terms of the corresponding total phaseΦα [9]

Pα =
e
Ω

Φα

2π
Rα (6)

where Rα is the length of the real-space lattice vector in the
directionα. By analogywith Eq. (4) for polarization, the total phase
is split into two components

Φα = ϕel,α + ϕion,α, (7)

where ϕel,α and ϕion,α are electronic and ionic phases, respectively.
The ionic phase for a given structure is determinedby the spatial

position and charge of individual ions via [9]

ϕion,α = 2π
N

s=1

Z ion
s ρs,α, wrapped in the range [0, 2π ] (8)

where ρs,α is the fractional coordinate of ion s in the crystallo-
graphic direction α.

In practice, the Berry phase ϕ(k∥) is computed for individual k-
paths parallel to the α-axis in the Brillouin zone (Fig. 1), and each
result is wrapped in the range of [0, 2π ]. Then, the total electronic
phase corresponds to an average [3]

ϕel,α = S−1
⊥


S⊥

dS⊥ϕ(k∥), (9)

where S⊥ is the surface area of the Brillouin zone perpendicular
to the α-axis. The Berry phase for an individual path k∥ can be
expressed as [3]

ϕ(k∥) = 2 Im


ln

J−1
j=0

det SM×M(kj, kj+1)


. (10)

Here S is the overlap matrix of size M2, where M is the number
of occupied bands, and the factor of two takes into account the
spin degeneracy. The path is designed such that the end k-point
represents the starting point displaced by the reciprocal lattice
vector, i.e., kJ − k0 = Gα .
Fig. 1. Berry phase integration in the Brillouin zone for calculation of the electronic
polarization along the z-axis.

Computation of the overlap integral between two cell periodic
parts of the Bloch function

Smn(kj, kj+1) = ⟨umkj |unkj+1⟩ (11)

is the most challenging part in determining the Berry phase. Here
m and n refer to the occupied band indices, which span in the range
1 to M . Calculation of such an integral is a part of the standard
procedure of constructingWannier functions, which is done by the
WIEN2WANNIER package [14].

3. Program implementation

BerryPI is a Python script that controls the execution process
according to the flow in Table 1. The script is invoked in the case
directory after completing the standard WIEN2k self-consistency
field cycle. The only input parameter required is the k-mesh
for Berry phase integration. The script determines the number
of occupied bands M , cell geometry, the ionic charges and their
relative positions based on WIEN2k files. The electronic, ionic
and total phases as well as the corresponding components of
polarization are calculated along the Cartesian axes.

Since the ionic and electronic phases used in the calculation
of polarization carry the uncertainty of an integer multiple of 2π ,
the proper calculation of the polarization difference between two
structures requires1P . |eR/Ω|. In the case of typical perovskite
structures, |eR/Ω| is of the order of 1 C/m2, which is still greater
than typical values of the spontaneous polarization (see Table 3).

When comparing the polarization between two structures, it is
useful to inspect the total phases as shown in Fig. 2. In this specific
case, the phases are Φ(0)

= −0.9π and Φ(1)
= +0.9π , which

yields 1Φ(1−0)
= 1.8π instead of −0.2π . This ambiguity can be

resolved by performing a calculation for the third structure, which
represents an intermediate state between (0) and (1).

The source code of BerryPI can be downloaded from
the GitHub repository. The execution of BerryPI requires
WIEN2k [13] and WIEN2WANNIER [14] installed along with
Python and the NumPy library.

4. Validation

First,webeginwith calculation of polarization in the casewhere
the outcome can be predicted exactly. For non-interacting (noble)
atoms the net polarization is zero. Therefore the electronic and
ionic polarization should cancel each other, Pion + Pel = 0. This
property is used in order to test the accuracy of our calculations of
polarization.
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Table 1
Calculation flow.

Command Description Input files Output files Package

x kgen -fbz Generates a k-mesh in the full Brillouin zone
kgen.def case.outputkgen WIEN2k
case.struct case.klist

case.kgen

write_w2win case Prepare the input for w2w with the occupied band rangea case.struct case.w2win WIEN2WANNIER
case.outputkgen

write_win case Create the input file for w2w

case.struct case.win WIEN2WANNIER
case.outputkgen
case.klist
case.w2win

win2nnkp.py case Generate the nearest neighbor list of k-points case.win case.nnkp BerryPI

write_w2wdef case Create definition file for w2w — w2w.def WIEN2WANNIER

x lapw1 (-c) Calculate wavefunctions for the new k-list case.struct case.vector WIEN2k
case.klist case.energy

w2w case Calculate the overlap matrix Smn(kj, kj+1)

case.struct case.mmn WIEN2WANNIER
case.nnkp
case.vector
case.energy
case.vsp
case.w2win
case.dayfile

mmn2pathphase.py case x Calculate the Berry phase along x-axisb case.mmn case-x.pathphase BerryPI
case.win

a The range of bands from 1 to the last occupied band is taken from case.scf file.
b x, y or z are used to specify the Cartesian axes along which the Berry phase is calculated.
Fig. 2. Phasemap that illustrates twoways of computing the phase difference1Φ .

Fig. 3. The unit cell containing two noble atoms used for the test. One of the atoms
is displaced from its centrosymmetric position.

Two helium atomswere placed in a tetragonal cell as illustrated
in Fig. 3. The cell dimensions a = 10 and b = c = 5 Bohrwere cho-
sen in order to prevent a possible interaction between neighboring
atoms. The reference structure had one atom positioned in the ori-
gin, while the second atom was placed at ρx = 0.5, ρy = ρz = 0.
In the perturbed structure, the second atomwas slightly displaced
in the x direction.
Table 2
Test for noble atoms.

Element Displacement Change in the polarization (C/m2
× 10−3)

1Pion 1Pel

He
0.001a 4.5802 −4.5814
0.002a 9.1604 −9.1604
0.005a 22.8966 −22.9058

Ne 0.001a −18.3210 18.3234
0.05a −916.0496 916.0496

The standard self-consistency LAPW cycle was executed with
WIEN2k for both structures using one k-point. It is strongly
advised not to use an iterative diagonalization option in the self-
consistency cycle prior to the Berry calculation, as it will likely lead
to spurious results. We forced WIEN2k to preserve the symmetry
of a perturbed structure when performing the calculation for the
reference (centrosymmetric) case. Thenwe calculate the electronic
and ionic polarization for both structures following the steps
described in Table 1 using a 10 × 1 × 1 k-mesh. The fine mesh
in the x direction is required for accurate computation of the Berry
phase in Eq. (10).

Results of the calculated difference in polarization between the
reference and perturbed structures are presented in Table 2. It
is apparent that the ionic and electronic polarization cancel each
other with high accuracy even for very small perturbations. The
same calculations were repeated for neon in order to verify the
performance in the case of multiple bands and core electrons. The
results for the ionic and electronic polarization (Table 2) are also
consistent with the expectation of zero net polarization, which
validates our approach. The sign alternation between the ionic
and electronic components of polarization is due to 2π wrapping
applied to the phase.

5. Applications

In the following, we provide two examples on calculation of
the material properties related to polarization using BerryPI.
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Table 3
Spontaneous polarization (C/m2) for perovskite compounds.

Compound BerryPI ABINIT Experimental Other calculations

BaTiO3 0.31 0.28 0.26a 0.22b , 0.29c

KNbO3 0.36 0.34 0.37d 0.33e

PbTiO3 0.86 0.84 0.75f 0.88g

a Wieder [19].
b Fechner et al. [20]: Projector augmented waves, with the local density

approximation (LDA) for the exchange–correlation functional.
c Wang et al. [21]: projector augmented waves, LDA.
d Kleemann et al. [22].
e Wang et al. [23]: LAPW (linear response), LDA.
f Gavrilyachenko [24].
g Sághi-Szabó et al. [8]: LAPW-GGA.

The examples include modeling the spontaneous polarization of
perovskite crystals and calculation of the Born effective charge of
polar materials.

5.1. Spontaneous polarization

Spontaneous polarization Ps is one of the major characteristics
for ferroelectricmaterials. It is defined as the change in polarization
that occurs when the crystal undergoes a phase change from the
centrosymmetric structure to a structure without an inversion
symmetry

Ps = Pnc − Pc . (12)

Here Pnc and Pc refer to the polarization values for non-
centrosymmetric and centrosymmetric structures, respectively.
Fig. 4 illustrates a particular example of the ABO3 perovskite crystal
in two different phases: cubic (centrosymmetric) and tetragonal
(non-centrosymmetric).

For our study we selected some of the most well character-
ized perovskite compounds: BaTiO3, KNbO3 and PbTiO3. The cal-
culations were performed with the WIEN2k package using the
generalized gradient approximation [15] (GGA) for the exchange
correlation functional and 6 × 6 × 6 sampling of the Brillouin
zone. The radii RMT of muffin tin spheres centered around indi-
vidual atoms are chosen to be equal: 2.5, 2.5, 2.26, 1.77, 1.7 and
1.5 Bohr for Ba, K, Pb, Nb, Ti and O, respectively. The product of
the minimum RMT radius and the maximum cut-off wave vector in
the reciprocal space was kept at a constant value of RMTKmax = 7
throughout all calculations. The energy to separate core and va-
lence electronswas set such that electrons in the following orbitals
were treated as valence electrons: Ba—5s 5p 6s, K—3s 3p 4s, Pb—
4f 5d6s 6p,Nb—4s4p4d5s, Ti—3s 3p3d4s andO—2s2p. In order to
minimize the discrepancy between experimental and theoretical
structures, we adopted the experimental values [16–18] of the lat-
tice constant for all three compounds in our calculations. The inter-
nal degrees of freedom for tetragonal structures were fully relaxed
by minimizing the Hellmann–Feynman forces acting on atoms be-
low 0.2 mRy/Bohr. The convergence tests performed with a denser
k-mesh 10 × 10 × 10 and RMTKmax = 8 indicate that the polariza-
tion calculations itself are not sensitive to those parameters (only
0.3% difference). However, a special care should be taken to obtain
accurate atomic positions. This is why the force convergence crite-
ria is reduced down to 0.2 mRy/Bohr, which is less than the default
value by a factor of 10.

Results of our calculations of the spontaneous polarization in
BaTiO3, KNbO3 and PbTiO3 compounds are summarized in Table 3.
Our results are consistent with the experimental data and results
of other first-principle calculations.

Next we explore the sensitivity of calculation results to the
choice of the basis set (LAPW vs. plane waves). The same
calculations were repeated with the ABINIT package [11] using
Hartwigsen–Goedecker–Hutter pseudopotentials with semicore
Table 4
Born effective charge Z∗

zz for tetragonal perovskite crystals.

Compound Atom BerryPI Other calculationsa

BaTiO3

Ba +2.77 +2.83
Ti +5.90 +5.81
O1 −4.79 −4.73
O2 −1.97 −1.95
O3 −1.97 −1.95

PbTiO3

Pb +3.50 +3.52
Ti +5.34 +5.18
O1 −4.51 −4.38
O2 −2.14 −2.16
O3 −2.14 −2.16

GaAs As −2.21 −2.00

NaCl Na +1.11 +0.99
a Results for BaTiO3 are based on pseudopotential DFT-LDA calculations [26]. The

data for PbTiO3 refer to LAPWDFT-GGA calculations [8]. GaAs values were obtained
from pseudopotential DFT-LDA calculations [28]. The effective charges for NaCl
refer to Hartree–Fock calculations [29].

electrons for K, Ti, Nb and Ba [25]. Due to the presence of semicore
electrons, the cutoff energy was chosen to be relatively high
(30 Ha). In this calculation the k-mesh, lattice parameters and
atomic positions were kept identical to those used in WIEN2k. Our
ABINIT results (Table 3) are in agreement with LAPW (BerryPI)
data within 10% accuracy range.

5.2. Born effective charge

The Born effective charge reveals the mixed ionic and covalent
character of bonds and provides further insight into understanding
the origin of polarization effects in solids [26]. By definition, the
Born effective charge of an atom in a solid is related to the change
in polarization due to the displacement of this atom from its
equilibrium position [27]

Z∗

s,αβ =
Ω

e
∂Pα
∂rs,β

. (13)

It is convenient to express the effective charge in terms of the total
phase using Eq. (6), which yields

Z∗

s,αβ = (2π)−1 ∂Φα

∂ρs,β
. (14)

The zz component of the Born effective charge tensor was
calculated for tetragonal BaTiO3 and PbTiO3 structures using the
same parameters as described in Section 5.1. Individual atoms
were displaced by ρs,z = ±0.01, while keeping the position
of other atoms unchanged. The self-consistent electron density
was obtained for each perturbation. The corresponding change of
the total phase along the z axis was used in order to compute
the derivative in Eq. (14). The calculated Born effective charges
are presented in Table 4. The results obey the acoustic sum rule

s Z
∗

s,αβ = 0 with a negligible error. We also report calculation
of the effective charge for binary zinc-blende (GaAs) and rock-salt
(NaCl) structures. Our data are also consistent with results of other
first-principle calculations listed in Table 4.

6. Conclusions

We presented a module that extends the capability of WIEN2k
(all-electron density functional package) to calculation of polariza-
tion using the Berry phase approach. The accuracy of calculations
was verified using a model of non-interacting noble atoms. We
applied the approach to calculation of spontaneous polarization
and Born effective charge of some well characterized perovskite
crystals, sodium chloride and zinc-blende structures. Obtained
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Fig. 4. (Color online) Perovskite ABO3 cubic (a) and tetragonal (b) crystal structures.
results agree with alternative calculations and experimental
data.
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