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Abstract. We determine the nitrogen concentration of GaN0.01≤x≤0.05As1−x quantum wells
by evaluation of high resolution scanning transmission electron microscopy (STEM) images using
a high-angle annular dark field detector. Although nitrogen has a smaller atomic number than
Ga the image intensity increases with the nitrogen content. This is explained by the influence
of static atomic displacements by comparison with frozen lattice simulations. The resulting
nitrogen concentrations agree with high resolution X-ray diffraction measurements and strain
state analysis applied to STEM images.

1. Introduction
As small amounts of nitrogen reduce band gaps of ternary GaNAs and quaternary InGaNAs,
these semiconductors find many applications in the fields of electronics and optoelectronics. The
large bowing parameters allow tuning over a wide spectral range by setting the nitrogen content.
For all those applications an accurate understanding of the structural and chemical morphology
is important. For investigation of dilute semiconductors high-precision techniques are essential.
In this proceeding we employ high resolution (HR) scanning transmission electron microscopy
(STEM) imaging of GaNAs/GaAs using a high-angle annular dark field (HAADF) detector.
The HAADF intensity mainly stems from thermal diffuse scattered electrons, thus depending
on the atomic number of the scattering atoms [1]. In STEM images intensity maxima of the
HR pattern can directly be used to measure positions of atom columns, which is an advantage
over conventional transmission electron microscopy (TEM) where positions of extremal image
intensity depend on imaging parameters, lens aberrations and gradients of specimen thickness
and composition. We show that the correct interpretation of STEM intensity requires to take
into account the influence of static atomic displacements (SADs) that occur due to the small
covalent radius of nitrogen atoms compared with gallium or arsenic [2, 3].

2. Experimental Procedures
The sphalerite type GaNAs/GaAs sample was grown by metal-organic vapor phase epitaxy.
Five GaNxAs1−x quantum wells (QWs) with varying nitrogen concentrations x between 1 and
5 percent were embedded in GaAs. The nominal values of nitrogen concentration were derived
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from high-resolution X-ray diffraction (HRXRD) measurements. The QWs are separated by
80 nm spacers and have a width of approximately 10 nm. We prepared an about 160 nm thick
TEM lamella by focussed ion beam thinning using an FEI dual beam system Nova Nanolab 200.
Final thinning step was performed by ion milling at 400 V using a Technoorg Linda Gentle Mill
IV5. All STEM measurements were performed with an FEI Titan 80/300 microscope operated
at 300 kV. The specimens were viewed along the [001] direction. We used a camera length of
196 mm where the Fischione 3000 HAADF detector covers an angular range between 33 mrad
and 200 mrad. Imaging conditions were chosen as suggested in [4]. These conditions avoid
saturation of the detector and provide a linear signal transfer of the amplifier. We scanned
2048× 2048 image points with a dwell time of 16 µs, the scan direction was chosen parallel to
the growth direction to minimize the influence of specimen drift on the measurement of atom
column positions.

3. Simulation of Reference Data
STEM reference data were computed with the STEMsim program [5] using the frozen-lattice
multislice approach with supercells of 9× 9 unit cells size perpendicular to the electron beam
direction. Each unit cell was scanned with a resolution of 20× 20 picture elements (pixels). The
convergence angle of the electron beam was set to 9 mrad, the spherical aberration constant
of the condensor lens was defined to be 1.2 mm. Images were simulated for supercells with
nitrogen concentrations between 0 and 8 % in steps of 2 %. Intermediate concentrations and
thicknesses were interpolated by polynomial fitting. We implemented SADs by relaxation of
the supercells using a valence force field model [2, 6]. Debye Waller temperature factors were
taken from Ref. [7]. The non-homogeneous sensitivity of our HAADF detector was taken into
account. To suppress biasing of measured concentrations towards higher values in regions with
a concentration of zero due to noise, the reference data set was extrapolated towards negative
nitrogen concentrations.

4. Evaluation of nitrogen concentrations
For determining the nitrogen concentration within a GaNAs QW the QW itself as well as part
of the GaAs region was imaged. In a first step the positions of the atom columns are found. For
this the original STEM image was Wiener filtered and short-range fluctuations were reduced
by applying a low-pass filter in Fourier space. All further steps are performed with the original
unfiltered image. Next, the image area is segmented into Wigner-Seitz cells. Then the image
intensity is averaged within each cell which gives the local mean intensity. From the HAADF
intensity of the pure GaAs we deduce the specimen thickness which is extrapolated to the
nitrogen containing region by a polynomial. For doing this the ratio of HAADF intensity to
incident electron beam intensity is to be measured. Latter one was determined by a detector
scan. With known specimen thickness the HAADF intensity in the QW region is then directly
associated to a specific nitrogen concentration given by the simulated reference data.

5. Results and Discussion
The approach is described exemplarily on the basis of an HAADF STEM image containing a
QW with a nominal nitrogen concentration of 3.3 % at a magnification of 3.6 Mx. The applied
magnification was chosen to achieve adequate high resolution (the pixel size is about 50 pm) on
the one hand and a large GaAs reference region on the other hand. Latter one is important
because the regions next to the QW show decreased intensity and can therefore not be used as
reference signal. This effect is due to surface strain relaxation [8] and depends highly on the
amount of nitrogen in the well. The mean thickness obtained from the STEM image was 165 nm.

Figure 1 a) shows an HAADF image of all five QWs of the investigated specimen. Considering
only scattering depending on atomic number, one would expect an inverse contrast ratio: the

17th International Conference on Microscopy of Semiconducting Materials 2011 IOP Publishing
Journal of Physics: Conference Series 326 (2011) 012033 doi:10.1088/1742-6596/326/1/012033

2



  

a)

4.2 %

3.3 %

1.1 %

1.8 %

2.3 %

no
m

in
al

 N
 c

on
ce

nt
ra

tio
ns

 fr
om

 H
R

X
R

D

100 nm

Figure 1. a) HAADF image of all
GaNAs QWs encased in GaAs. The
N containing QWs show higher scat-
tering abilities compared to GaAs.
b) Simulated data of thickness de-
pendent HAADF signal normal-
ized to GaAs for selected nitro-
gen concentrations. Including SADs
HAADF intensity above 50 nm in-
creases with N content. Intensity de-
creases slightly if SADs are not taken
into account.
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imaged GaAs should be brighter compared to the nitrogen containing QW (e.g. observed by
Herrera et al. [9]). However, taking SADs into account, we observe a different behavior: for
typical STEM specimen thicknesses above 50 nm, the HAADF signal increases with nitrogen
concentration. Figure 1 b) shows the simulated HAADF intensity normalized to GaAs for
selected concentrations.

Evaluation of the nitrogen concentration as described in section 4 yielded the concentration
map depicted in Figure 2 a). Averaging the concentration values along atomic rows parallel to
the QW gives the concentration profile shown in Figure 2 b). The errorbars involve the standard
deviation caused by intensity fluctuations as well as actual concentration deviations divided by
the root of the number of positions that account for the calculated mean value (standard error).

We find that the nitrogen distribution is well confined to the QW area with rather sharp
edges. The regions next to the QW cannot easily be evaluated because surface strain fields
influence the HAADF contrast and the concentrations in these areas do not belong to real
nitrogen contents. For defining the mean concentration value from Figure 2 we trust the values
close to the center of the QW because there surface strain can be neglected due to symmetry.
Here we find a nitrogen concentration of 2.8±0.6 % which agrees with the nominal value of
3.3 %. This effect was well reproduced in simulated images where elastic relaxation and lattice
plane bending were taken into account. These results will be published elsewhere.

Figure 3 a) shows the N concentrations derived from HAADF intensity evaluation for all five
QWs. We measured at four different positions on the specimen for each QW. Shown are the mean
values of these positions, the errorbars involve the standard deviation only. Taking the errorbars
of each single measurement into account the accuracy of the concentration determination is about
1 % N. To obtain further values for comparison we evaluated the same images in terms of a strain
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Figure 2. a) Concentration
map achieved from evaluating
HAADF intensity. b) Arith-
metic mean of linescans in
growth direction. The error-
bars involve standard error.
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Figure 3. Concentrations mea-
sured for all five QWs a) by
evaluation of HAADF intensity
and b) from strain state analy-
sis. Shown are the mean values of
four evaluated areas in each case.
The errorbars represent the stan-
dard deviations and do not con-
tain the error of the single mea-
surement.

state analysis (SSA). The nitrogen in the QW leads to a smaller lattice distance compared with
GaAs reference regions. From the image we determine the tetragonal distortion for each position
of the atomic columns from which the nitrogen concentrations are calculated applying Vegard’s
law and assuming complete tetragonal distortion (thick specimen limit). The concentrations
derived from SSA are shown in Figure 3 b) where the values are presented in the same way as
in Figure 3 a). Concentration from SSA agree with those from intensity evaluation and with
nominal values when taking single measurement accuracy into account.
So a combination of SSA and HAADF intensity evaluation provides a concentration
determination with enhanced reliability.

6. Conclusion
By taking static atomic displacements into account, the comparison of STEM HAADF images
of dilute GaNAs quantum wells with simulated reference data allows a nitrogen concentration
determination with an accuracy of 1 % N. We verified our results by evaluating the same images
with strain state analysis.
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