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Abstract
An extension of an original lucky-drift model to the case of disordered semiconductors is
proposed, motivated by experimental observations of an avalanche phenomenon in amorphous
semiconductors. The generalization encompasses two scattering mechanisms: an inelastic one
due to optical phonons and an elastic one due to a disorder potential. An obtained analytical
solution is verified by a kinetic Monte Carlo simulation. Eventually, experimental data on a
field dependence of the impact ionization coefficient in amorphous selenium are interpreted
using reasonable material parameters.

1. Introduction

In 1980 Juska and Arlauskas [1] pioneered the first clear
experimental observation of impact ionization in an amorphous
semiconductor (amorphous selenium, or a-Se), which was
confirmed by further experimental studies [2, 3]. Due
to these studies, the phenomenon of impact ionization in
amorphous solids has found an application in photosensors
for high-sensitivity TV camera tubes [2]. The combination
of the unique photoconducting properties of a-Se with the
impact ionization has a high potential in x- and γ -ray
detectors for medical imaging applications [4, 5]. It is also
believed that impact ionization is responsible for an electrical
switching between the crystalline and amorphous phases in the
chalcogenide alloys As2Se3 [6] and Ge2Sb2Te5 [7, 8]. The
latter topic is being actively investigated in the context of new-
generation, non-volatile electronic data storage [9].

The theory of impact ionization in crystalline semiconduc-
tors is well established due to the fundamental contributions
of Wolff [10], Shockley [11], Baraff [12] and Ridley [13].
The central point of the theory is finding a relation between
the impact ionization coefficient, which is the inverse of the
average distance traveled by a carrier prior to the ionization
event, and the strength of the applied electric field. On its
way, the carrier experiences energy and momentum relaxation
scattering due to the interaction with phonons and/or defects
that balances the energy gained by the carrier while drifting in
the electric field.

Baraff [12] successfully solved the problem by computing
numerically a free-carrier energy distribution function from
the Boltzmann equation. Eventually, it turns out that neither
Wolff’s diffusion approximation [10] nor Shockley’s lucky
electron picture [11] is valid. The central assumptions
of Baraff’s theory are the following: (i) while drifting,
electrons can gain energy only from the external electric field
E , (ii) electrons are subject to elastic scattering collisions
characterized by an energy-independent mean free path λm,
provided their kinetic energy does not exceed the optical
phonon energy h̄ωop, (iii) carriers with kinetic energy
above h̄ωop undergo inelastic collisions only by emitting
an optical phonon of the constant energy h̄ωop on the
same mean free path, i.e., λop = λm, (iv) all scattering
events are isotropic, (v) the impact ionization takes place
immediately after the electron acquires the kinetic energy
equal to the ionization threshold energy Ei. Despite the
idealistic assumptions, Baraff’s curves fit experimental data
for the charge multiplication in crystalline semiconductors
remarkably well [14]. As an alternative to the numerical Baraff
curves, Ridley [13] suggested an analytical solution for the
same problem known as a lucky-drift model. This model
was further advanced by Burt [15] and tested against a kinetic
Monte Carlo simulation [16]. No significant discrepancy was
found between the simulation results and those of Baraff,
Ridley, and Burt.

The development of a theory of impact ionization in
amorphous solids was undertaken only recently. An attempt
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to apply Shockley’s theory to explain the field dependence
of the impact ionization coefficient in a-Se failed, resulting
in unrealistic material parameters [17]. Reasoning by
Hindley [18] and the original lucky-drift mechanism proposed
by Ridley [13] inspired the development of a modified
lucky-drift model of avalanche in amorphous semiconductors
proposed by Rubel et al [19] and Kasap et al [20]. The
main feature of the modified lucky-drift model is an explicit
treatment of elastic scattering due to the disorder potential
inherent to amorphous solids, in addition to the inelastic
scattering by optical phonons. The scattering by a disorder
potential is assumed to be the dominant mechanism of the
momentum relaxation for energetic electrons. The modified
lucky-drift model contributed to resolving a long-standing
question on the non-existence of avalanche in hydrogenated
amorphous silicon [21]. The idea of applying the lucky-drift
model to amorphous semiconductors received further attention
in the work of Kasap et al [20]. Detailed analysis [22],
however, revealed that the analytical formulation initially
proposed in [19], and used so far, essentially underestimates
the impact ionization coefficient.

The purpose of this communication is to extend an
analytical formulation of the original lucky-drift model aiming
at incorporating the effects of disorder on the carrier trajectory.
These effects are associated with the intensive elastic scattering
in addition to the inelastic optical phonon scattering as
discussed previously in the context of the modified lucky-drift
model [19]. The proposed analytical solution is thoroughly
examined by comparison with results of a kinetic Monte Carlo
simulation for the field dependence of the impact ionization
coefficient. Finally, the obtained analytical expression for the
field dependence of the impact ionization coefficient is applied
to the interpretation of experimental data.

2. Model and simulation algorithm

The model studied here was originally proposed in [19] and,
therefore, will only be briefly outlined for completeness. For
avalanche multiplication to occur, the carriers must not be
trapped either in shallow or deep traps and the trap-controlled
transport [23] must become deactivated [24]. The simulations
presented in this paper consider electronic device quality
a-Se, in which the hole transport is not trap limited, that is the
deep trap concentration is small [25], so that at sufficiently high
fields the transport becomes deactivated.

We begin by assuming that, initially, a charge carrier is
located at the origin of a coordinate system and has no kinetic
energy. Under the influence of an applied electric field E ,
the carrier begins to move in a direction prescribed by the
field. Two independent scattering mechanisms influence the
carrier trajectory: (i) elastic scattering by a disorder potential
and acoustic phonons, (ii) inelastic scattering via emitting an
optical phonon of energy h̄ωop. The elastic and inelastic
scattering processes are characterized by associated individual
mean free paths λd and λop, respectively. For the sake of
simplicity, we neglect a possible anisotropy of the scattering
angles and an energy dependence of λs. This assumption fully
complies with Baraff’s theory [12].

Figure 1. Carrier trajectory with relevant scattering processes (a) and
the corresponding energy diagram (b).

The impact ionization takes place immediately after the
carrier builds the kinetic energy equal to the ionization
threshold Ei. The impact ionization coefficient is defined
as [12]

α = 〈Z〉−1, (1)

where 〈Z〉 is the average distance traveled by the carrier in
the field direction prior to the ionization. Figure 1 illustrates
schematically a typical carrier trajectory and the associated
energy gain.

The simulation algorithm used here (figure 2) is similar
in spirit to that described by Fawcett et al [26]. It employs
a self-scattering approach [27], which introduces a fictitious
‘forward’ scattering in order to eliminate solving integral
equations in every Monte Carlo step [28]. The self-scattering
rate Rss was taken to be the sum of the maximal elastic and
inelastic scattering rates:

Rss = (λ−1
d + λ−1

op )
√

2E/m. (2)

Here m is the carrier effective mass and E is its kinetic energy.
The stochastic free flight time dt is generated according to

dt = −R−1
ss ln (ξ), (3)

where ξ is a random number with an even distribution between
0 and 1. The wavevector k of the change carriers and the
position vector x associated with the free flight are determined
by

dk = eE dt/h̄ (4)

and
dx = kh̄ dt/m + eE dt2/2m, (5)
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Figure 2. Simulation algorithm in the case of zero temperature.

respectively. Here e is a carrier charge and h̄ is Plank’s constant
divided by 2π .

The elastic and inelastic scattering rates are calculated
at the end of each free flight according to the following
expression:

R = kh̄/λm. (6)

The inelastic scattering rate is non-zero only if the kinetic
energy k2h̄2/2m is equal to or greater than the optical phonon
energy h̄ωop.

The probability of elastic or inelastic scattering is
determined by the ratio R/Rss. Should one of these processes
take place, we choose randomly a new orientation of the
k vector and adjust its absolute value in the case of the
inelastic scattering. If none of these processes occur, the carrier
undergoes self-scattering, i.e., its k vector remains unchanged.
After that, a new free flight time is generated according to
equation (3), and the sequence is repeated until the carrier
energy reaches the threshold Ei.

3. Results and discussion

3.1. Modification of the lucky-drift model

We begin with verification of the simulation algorithm by com-
paring its results with known analytical theories [12, 13, 16].
Since those theories imply scattering by optical phonons only,
we temporarily eliminate elastic scattering from our model in
order to enable a direct comparison. The simulation results are
compared to the analytical solutions of Baraff [12], Ridley [13]
and McKenzie and Burt [16] in figure 3. The agreement
between our simulation and those analytical solutions gives
confidence in the simulation algorithm.

Figure 3. The impact ionization coefficient as a function of the
electric field for various optical phonon energies. The analytical
results shown by lines are due to Baraff [12], Ridley [13] and
McKenzie and Burt [16]. The symbols are the results of the current
kinetic Monte Carlo (KMC) simulation.

McKenzie and Burt’s version of the lucky-drift model [16]
provides, apparently, the most accurate analytical solution
for the range of parameters selected in figure 3. In the
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following, we extend the original lucky-drift model aiming at
incorporating the effects of disorder on the carrier trajectory.
These effects are associated with intensive elastic scattering in
addition to the optical phonon scattering [19].

Our starting point is an expression for the impact
ionization coefficient derived in the framework of a classical
lucky-drift theory under the assumption of an energy-
independent mean free path [16]:

αλm =
λm
λE

[
exp

(− l0
λE

) − λm
λE

exp
(− l0

λm

)]

1 − exp
(− l0

λE

) − (
λm
λE

)2[
1 − exp

(− l0
λm

)] . (7)

Here λm is the momentum relaxation mean free path, λE is
the energy relaxation mean free path, and l0 = Ei/eE is the
characteristic distance.

The energy relaxation mean free path λE is the central
point of our modification. It is defined as the distance traveled
by a carrier of energy E in the field direction prior to the full
energy relaxation and can be expressed as

λE = vd(E)τE (E), (8)

where vd is the drift velocity and τE is the energy relaxation
time. The drift velocity is related to the momentum relaxation
time τm via [13]

vd(E) = eτm(E)E
m

. (9)

The energy relaxation time is simply a multiple of the optical
phonon relaxation time, i.e., τE (E) = (E/h̄ωop)τop(E).

In application to high-mobility semiconductors, the opti-
cal phonon scattering is considered as the dominant mechanism
for both momentum and energy relaxation [12, 13, 16]. Thus,
it is usually assumed that τop = τm. In our case, the disorder
scattering is the dominant momentum relaxation mechanism,
and the following inequality holds: τop � τm. In order to
account for that feature, we introduce an additional parameter

γ = λop/λm = 1 + λop/λd, (10)

which has appeared in previous studies [19, 21]. Then, the
energy relaxation time can be expressed as

τE (E) = γ τm(E)
E

h̄ωop
. (11)

In the case of γ = 1, we recover the original lucky-drift
model [13, 16], whereas γ � 1 corresponds to the modified
lucky-drift model for amorphous solids [19].

Substituting equations (9) and (11) into (8), and taking
into account that E = mv2

g/2 and λm = vg(E)τm(E), where
vg is the carrier group velocity, the expression for the energy
relaxation mean free path takes the form

λE = eγ λ2
mE

2h̄ωop
. (12)

Equations (7) and (12) yield to our main result: an expression
for the impact ionization coefficient, which includes the effects
of disorder:

αλm =
2r x
γ

[
exp

(− 2r x2

γ

) − 2r x
γ

exp(−x)
]

1 − exp
(− 2r x2

γ

) − (
2r x
γ

)2[1 − exp(−x)]
. (13)

Here we use Ridley’s notations: x = Ei/eEλm and r =
h̄ωop/Ei. This result shows that two independent scattering
processes—elastic by the disorder potential and inelastic by
optical phonons—can be viewed as a single inelastic scattering
process characterized by an effective energy h̄ωop/γ emitted
per collision and by the reduced mean free path λm determined
by equation (10).

3.2. Comparison with simulation

Before we begin a comparison between the proposed analytical
expression for the impact ionization coefficient and simulation
results, we need to identify a range of parameters relevant for
a-Se. Following Hindley [18], we assume that the ionization
threshold energy Ei in disordered semiconductors equals their
mobility gap. The latter is about 2.1 · · · 2.3 eV in a-Se [24, 29].
The optical phonon spectrum is centered at 31 meV [30],
which results in h̄ωop/Ei ≈ 0.014.

Amorphous selenium features a relatively low micro-
scopic hole mobility of about 1 cm2 V−1 s−1, even for sub-
stantially hot carriers [1]. In a relaxation time approximation,
such a value of the drift mobility corresponds to the mean
free path of the order of an interatomic spacing; therefore, we
assume λm ∼ 0.5 nm. Taking into account this value and
the magnitude of electric field E = 0.75 · · · 1.70 MV cm−1 at
which the impact ionization is observed in a-Se, we determine
the range for another parameter Ei/eEλm = 30 · · · 70.

The mean free path due to the optical phonon scattering,
λop, in semiconductors is typically of the order of tens of
angstroms [31]. Ridley [31] proposed a simple empirical
expression λop[nm] ∼ 60ρh̄ωop E−1/2

i which relates the optical
phonon mean free path to the material density ρ, the optical
phonon frequency, and the ionization energy. Taking ρ =
4.3 g cm−3 ([32], p 129) and h̄ωop = 0.031 eV [21], we obtain
λop ∼ 5 nm in a-Se. This value is comparable with the inelastic
scattering length of approximately 3 nm deduced by Juska [24].
Eventually, it is possible to identify the ratio λop/λm = 10+10

−5 .
The uncertainty reflects an inaccuracy in estimates for the mean
free paths.

Values of the impact ionization coefficient calculated
using the generalized lucky-drift model (equation (13)) are
compared with results of the kinetic Monte Carlo simulation
in figure 4(a). The analytical results match well with
the simulation data for the selected range of parameters,
which confirms the confidence of our extension to the lucky-
drift model. Analytical results obtained using the previous
mathematical expression [19] for the field dependence of the
impact ionization coefficient are also shown in figure 4(a). The
comparison clearly indicates that equation (13) is much more
accurate than the former analytical solution [19].

In the limit of λE � λm and l0 � λE , which is relevant in
our case, equation (7) can be reduced to [16]

α ≈ λ−1
E (E) exp

[
− Ei

eEλE (E)

]
. (14)

This result resembles Shockley’s ballistic expression [11] for
the impact ionization coefficient, though using λE instead of
λm [16]. We confirm the validity of equation (14) by re-plotting

4



J. Phys.: Condens. Matter 23 (2011) 055802 O Rubel et al

Figure 4. The impact ionization coefficient as a function of the
electric field for various r/γ ratios. The symbols are the results of
the current kinetic Monte Carlo simulation. The solid lines in panel
(a) represent the analytical results of equation (13); the dashed line
corresponds to the analytical solution proposed in [19] (shown only
for r/γ = 0.001). Panel (b) represents the same simulation data as in
panel (a) using the energy relaxation mean free path defined by
equation (12) instead of the momentum relaxation mean free path for
normalization. The line in panel (b) corresponds to the approximate
expression for the impact ionization coefficient. The error bars are
±5%, unless otherwise indicated.

(This figure is in colour only in the electronic version)

the simulation data in figure 4(b) using λE as a normalization
factor for distances on both coordinates axes. As a result, the
simulation data from figure 4(a) merge into a single line, which
fits to equation (14) as shown in figure 4(b). This asymptotic
form has an important advantage; namely, it allows us to reduce
the number of independent fitting parameters down to two
arguments: Ei and λopλm/h̄ωop. Below, we attempt to extract
these parameters by fitting equation (14) to experimental data.

3.3. Comparison with experiment

Experimental data for the field dependence of the impact
ionization coefficient in a-Se adopted from [3, 21] are gathered

Figure 5. The impact ionization coefficient as a function of the
electric field in a-Se. The symbols represent the experimental data
reported by Tsuji et al [3] and Reznik et al [21]. IS and BS refer to
an insulating and blocking structure, respectively. The solid line
corresponds to the best fit to the experimental data using
equation (14) with the parameters listed in table 1.

in figure 5. These data are fitted to equation (14) using the
fixed ionization threshold energy Ei = 2.3 eV and only one
adjustable parameter λopλm/h̄ωop. The corresponding best-fit
curve is shown in figure 5.

The extracted value of the material parameter λopλm/h̄ωop

is 70 nm2 eV−1. Taking h̄ωop = 31 meV for the optical phonon
frequency in a-Se [21] and implying the momentum relaxation
mean free path of 0.5 nm, we deduce the optical phonon mean
free path of 4.3 nm. (Also note that the uncertainty in λop

is directly related to the uncertainty in λm, since only their
product matters.) The found value of λop agrees well with the
estimate made above.

The value of the optical phonon mean free path found
from the fit to the experimental data for a-Se using a less
accurate mathematical formulation [19, 21] has a discrepancy
of nearly a factor of two, when compared to the value extracted
using equation (14). The reason for such a discrepancy is
neglect of the drift contribution to the carrier trajectory in [19],
which leads to an underestimate of the impact ionization
rate [22]. The analytical expression presented here overcomes
that deficiency. This improvement is crucial for quantitative
analysis of experimental data.

We would like to emphasize that the theoretical model
presented here contains the minimal set of parameters (table 1)
required in order to capture the essence of hot carrier transport
in a disordered semiconductor. It is apparent from figure 5
that the theory predicts a stronger dependence of the impact
ionization coefficient on the electric field than that observed
experimentally. In order to align the theoretical curve with the
experimental data, one has to assume either an unreasonably

5



J. Phys.: Condens. Matter 23 (2011) 055802 O Rubel et al

Table 1. The parameters used in the theoretical fit to the
experimental data in figure 5 for a field dependence of the impact
ionization coefficient in a-Se.

Parameter Symbol Units Value

Momentum relaxation mean free path λm nm 0.5
Optical phonon mean free path λop nm 4.3
Ionization threshold energy Ei eV 2.3
Optical phonon energy h̄ωop meV 31

large ionization threshold energy Ei ∼ 13 eV or some
field/energy dependence of the λs. Recent calculations [33] of
the volume deformation potential and its energy dependence in
selenium clearly favor the latter assumption. These scenarios
were thoroughly investigated by Kasap et al [20], though in
the framework of the original lucky-drift model. However,
extension of the generalized lucky-drift model to the case of
energy-dependent mean free paths and its verification by a
kinetic Monte Carlo simulation is beyond the scope of this
paper.

Further improvement of the theory can be achieved by
taking into account the energy dependence of the impact
ionization rate, i.e., by introducing a ‘soft’ ionization threshold.
This dependence includes details of the band structure and
varies significantly for different semiconductors [34]. In the
absence of any information in the literature on the energy
dependence of the impact ionization rate for charge carriers
in a-Se, we can only qualitatively describe the anticipated
effect of the soft threshold on the field dependence of
the impact ionization coefficient. Implementation of the
soft threshold would lead to an increase of the effective
ionization threshold energy, which requires a corresponding
adjustment of the λopλm product. As a consequence, one can
expect a weaker field dependence of the impact ionization
coefficient, according to the arguments presented in the
preceding paragraph, resulting in a better fit to the experimental
data.

Finally, we comment on the temperature dependence
of the impact ionization coefficient in a-Se. In contrast
to crystalline semiconductors, which typically feature a
decrease of the impact ionization coefficient with increasing
temperature, the measurements of Tsuji et al [3] revealed
a positive temperature dependence of both the hole and
electron impact ionization coefficients in a-Se. In the
framework of the chosen model, the temperature affects only
the optical phonon scattering by alternation of the phonon
population. The simulation shows that, at the electric
field of 1 MV cm−1, the temperature variation in the range
0 · · · 300 K has no significant effect on the impact ionization
coefficient within a 5% error bar. This result is well justified
giving that kBT < h̄ωop, where kB is the Boltzmann
constant. Therefore, the positive temperature dependence
of the impact ionization coefficient in a-Se comes from
effects that are not captured within our model. Possible
candidates include (i) the temperature enhanced electron–
hole pair dissociation [3], (ii) the thermal activation of
secondary generated charge carriers from shallow localized
states [20], and (iii) the temperature dependence of the impact
ionization threshold [35]. However, it is problematic to justify

mechanisms (i) and (ii) in the light of the soft ionization
threshold, since secondary carriers will likely have a non-zero
kinetic energy.

4. Conclusions

The dependence of the impact ionization coefficient on the
applied electric field in disordered semiconductors was studied
theoretically. The simplest model was considered, which
features an inelastic scattering of charge carriers due to their
interaction with optical phonons mediated by an intensive
elastic scattering on a disorder potential. An analytical solution
for the formulated problem was obtained as an extension of
the original lucky-drift model proposed by Ridley [13] and
Burt [15]. It was shown that the two scattering mechanisms
inherent to disordered semiconductors can be combined into a
single inelastic scattering process characterized by an effective
energy loss per collision and by a reduced mean free path.
A kinetic Monte Carlo simulation was performed in order to
verify the analytical formulation, which turns out to be much
more accurate than the expression previously suggested in [19].
Experimental data for the field dependence of the impact
ionization coefficient in amorphous selenium were fitted by
the proposed expression using a reasonable set of material
parameters. The extracted value of the optical phonon mean
free path was found in agreement with independent estimates.
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