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Abstract
Impact ionization of holes and domination of p-conductivity in chalcogenide semiconductors
are attributed to a weak electron–phonon interaction inherent to lone-pair states. This argument
is supported by first-principles calculations of an acoustical deformation potential in trigonal
selenium. Results of the calculations reveal a strong dependence of the deformation potential on
the excess energy of charge carriers. The latter is interpreted using a simple tight-binding
model.

1. Introduction

It had long been believed that impact ionization was inherent
to high-mobility crystalline semiconductors only, until it
was found experimentally that amorphous selenium (a-Se)
possesses impact ionization at practical electric fields [1–3].
This phenomenon has found an application in photosensors for
high-sensitivity broadcasting camera tubes [2]. A combination
of the unique photoconducting properties of a-Se with the
effect of impact ionization has a high potential in x- and γ -
ray detectors for medical imaging applications [4]. It is also
believed that impact ionization is responsible for electrical
switching between the crystalline and amorphous phases in
Ge–Sb–Te alloys [5, 6]. The latter topic is being actively
investigated in the context of new-generation non-volatile
electronic data storage [7].

Experimental studies indicate that holes, not electrons,
are responsible for impact ionization in a-Se [1] and
Ge2Sb2Te5 [5]. It is the presence of a chalcogen element that
unites these two otherwise different materials. It is known
that, if chalcogen is a major constituent in a semiconductor,
the valence band in these materials is formed by unshared
(lone-pair) electron states [8]. Since lone-pair states are not
involved in chemical bonding, one can expect a response
of the corresponding electronic states to a perturbation
associated with phonons to be weak [9]. This may lead
to a weaker electron–phonon interaction (and consequently a

weaker scattering) for holes in the lone-pair states as compared
to electrons in anti-bonding states.

The purpose of this paper is to verify this hypothesis
by performing first-principles calculations of an acoustical
deformation potential in selenium. We will show that (i) the
absolute value of the deformation potential for electrons
exceeds that for holes, (ii) the deformation potential has a
strong dependence on the excess energy of charge carriers and
(iii) in the case of holes, this dependence is non-monotonic
with a minimum at intermediate energies. Eventually, one can
speculate that these observations favor the impact ionization of
holes, which is in agreement with the experiments.

2. Calculation of the volume deformation potential

Here we limit our study to the interaction of charge carriers
with long-wavelength acoustical phonons, thus leaving other
scattering mechanisms beyond the scope of this paper.
(However, it does not mean that other scattering mechanisms,
i.e. optical phonon scattering, are irrelevant for high-field
transport.) It is known from scattering theory that the rate of
carrier scattering by phonons is proportional to the square of
the deformation potential [10]. In the case of acoustic phonon
scattering, the strength of the electron–phonon interaction is
determined by a volume deformation potential.

Simulations of amorphous solids always entail some
degree of structural uncertainty [11]. The structure of a-Se
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consists of a mixture of chain and ring segments, the relative
fraction of which is sensitive to deposition parameters [12–14].
For simplicity, we have chosen a crystalline structure of
trigonal selenium (t-Se) for the purpose of our study under
the assumption that the results obtained are also applicable
to the amorphous phase. This choice is supported by x-ray,
ultraviolet and inverse photoemission measurements [15–17]
that reveal an almost identical density of states in amorphous
and trigonal selenium. This is likely due to the fact that the
amorphous structure preserves the equilibrium bond length and
the bond angle on a short-range scale.

The unit cell of t-Se consists of three atoms, which leads
to a total of nine phonon branches: three acoustical and six
optical [18, 19]. One of the acoustical modes corresponds
to the displacement of atoms along the chain (c axis). The
other two modes are associated with the displacement of
atoms in two directions perpendicular to the chain. In the
following we calculate deformation potentials associated with
such displacements.

Two deformation potentials, �LA and �TA, enter a matrix
element for the interaction of charge carriers with longitudinal
and transverse acoustical phonon modes, respectively. Taking a
symmetry of the Brillouin zone into account, these deformation
potentials can be expressed as [20]

�LA = �‖ + (�⊥ − �‖) sin2 ϑ, (1a)

�TA = 1
2 (�‖ − �⊥) sin 2ϑ. (1b)

Here �‖ and �⊥ are the deformation potentials associated with
strain components parallel and perpendicular to the c axis,
respectively, and ϑ is an angle between the phonon wavevector
q and the c axis. In the literature, strain-induced effects on
the electronic structure are often expressed using Herring–
Vogt deformation potentials. The parallel and perpendicular
deformation potentials are related to dilatation and uniaxial
deformation potentials in Herring–Vogt notation via �d = �⊥
and �u = �‖ − �⊥, respectively.

Assuming that the distribution of ϑ’s is spherically
symmetric (see [21], p 106), it can be eliminated from
equation (1) by performing an averaging over sin ϑ dϑ . The
result for the average squared longitudinal and transverse
deformation potentials is

〈�2
LA〉 = �2

‖ + 4
3�‖(�⊥ − �‖) + 8

15 (�⊥ − �‖)2, (2a)

〈�2
TA〉 = 2

15 (�‖ − �⊥)2. (2b)

From comparison of the right-hand side in equation (2b)
with the last term in equation (2a), it becomes apparent that
scattering by longitudinal phonons will dominate. Next we
calculate the deformation potentials �‖ and �⊥ in order to
estimate 〈�2

LA〉 for electrons and holes in t-Se.
By definition, the volume deformation potential �� is

a proportionality factor between the relative change of the
volume of a unit cell, �, and the strain-induced variation of
an eigenvalue En(k) specific to the band n and the vector k in
the Brillouin zone:

δEn(k) = ��,n(k)
δ�

�0
. (3)

Figure 1. Band structure of trigonal selenium along some
high-symmetry lines in the hexagonal Brillouin zone, which is shown
in the inset. The deformation potentials �‖ (eV) due to the uniaxial
strain εzz and �⊥ (eV) due to the biaxial strain εxx = εyy are
indicated for selected k-points in 2 eV energy windows.

The deformation potential can be found by comparing the
electronic structure of strained and unstrained atomic models
calculated using a density functional theory (DFT).

Calculations of the electronic structure were performed
using a full-potential linearized augmented plane-wave method
implemented in the WIEN2K package [22] and a local density
approximation [23] for the exchange–correlation functional.
The volume of a cell was partitioned onto nonoverlapping
spheres with a radius of 2 Bohr centered at the nucleus of
individual atoms. The energy to separate core and valence
electrons was set to −6 Ryd. The product of the atomic
sphere radius and plane-wave cutoff in k-space (the so-called
RKmax parameter) was equal to 7. The Brillouin zone of a
primitive unit cell was sampled using a 10×10×8 Monkhorst–
Pack mesh [24]. The selected parameters provide an adequate
convergence of the calculated deformation potential.

The absolute deformation potential �‖ due to a uniaxial
strain εzz along the helical chain was calculated using a
supercell approach [25]. This method, however, is compatible
with uniaxial strain only. Therefore, when calculating the
deformation potential �⊥ due to the volume expansion in a
plane perpendicular to the c axis, we took the energy level
of the 1s core state as a reference, assuming that it is not
sensitive to the volume deformation. The latter approach was
successfully applied to the calculation of volume deformation
potentials in III–V and II–VI semiconductors [26]. The
systematic error introduced by this approximation into the
calculated value of the deformation potential is about 1 eV.

Figure 1 illustrates the dependence of the deformation
potentials �‖ and �⊥ on the k-vector for high-symmetry
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Figure 2. Dependence of the average longitudinal acoustical
deformation potential defined by equation (2a) on the access energy
for electrons and holes. The excess energy for electrons and holes is
measured from the bottom of the conduction band at the H-point and
the top of the valence band at the L-point, respectively. The size of
the symbols is proportional to the weight of a particular k-point.

(This figure is in colour only in the electronic version)

directions of the Brillouin zone. The conduction band minima
(H valley) has the highest absolute value of the deformation
potential and is mostly sensitive to longitudinal deformations.
The absolute value of the deformation potential for the valence
band maximum (L valley) is comparatively low (only 1.5
versus 8.1 eV for the conduction band).

Being accelerated by the applied electric field, carriers
have enough kinetic energy to span the entire Brillouin
zone. Therefore, we calculated the longitudinal deformation
potential 〈�2

LA〉 in 94 k-points evenly spread in the irreducible
Brillouin zone. The result as a function of the excess energy of
a charge carrier is illustrated in figure 2. The size of symbols
in figure 2 represents the weight of a particular k-point, i.e. the
number of equivalent k-points in the Brillouin zone.

3. Discussion

In spite of the scattering of data in figure 2, the following trends
can be noticed: (i) a parabolic dependence of 〈�2

LA〉 on the
excess energy of holes with a minimum at the hole energies
of about 0.4–0.8 eV, (ii) overall, much higher deformation
potentials for electrons than for holes and (iii) an increase
of the deformation potential as the excess energy approaches
the ionization threshold, which is about 2 eV. These features
will be interpreted below in terms of a simple tight-binding
model [27].

Figure 3. Effect of the volume expansion on the energy bands in
trigonal selenium (schematic). Solid and dashed lines correspond to
the energy levels in the unstrained and strained lattice, respectively.
EF is the Fermi energy.

Six valence electrons (4s24p4) per atom in selenium favor
a chain structure in which every atom has two neighbors. The
doubly occupied s states lie deep in energy and their admixture
to p states is low [14]. The valence and conduction bands are
formed essentially by p states. The hybridization splits atomic
p states into bonding p+, anti-bonding p− and lone-pair pLP

states as illustrated in figure 3. The remaining four valence
electrons occupy p+ and pLP states. Thus, the bottom of the
conduction band and the top of the valence band are associated
with p− and pLP states, respectively [8].

Splitting of the energy levels and the bandwidth are
determined by a mutual orientation of p orbitals in adjacent
atoms and interatomic matrix elements Vppσ and Vppπ . These
matrix elements depend on the interatomic spacing as d−2

(see [28], p 48), which is a primary source for the volume
deformation potential. A uniform volume expansion reduces
both |Vppσ | and |Vppπ | that results in a shift of p+ and p− bands
towards one another and, simultaneously, a shrinking of all
bands (see figure 3, dashed lines). Apparently, the states in
the middle of the lone-pair band are least affected by the strain,
which qualitatively agrees with the results in figure 2.

The energy dependence of the deformation potential will
have consequences for the mean free path due to scattering by
phonons, since the latter is inversely proportional to the square
of the deformation potential. The mean free path for holes will
get longer as their kinetic energy increases, while for electrons
we expect the opposite dependence. This observation is in
line with an empirical finding of Kasap et al [29], who had to
imply an increase in the mean free path of holes as their excess
energy increases in order to fit experimental data for the field
dependence of the impact ionization coefficient in a-Se.

Finally, we can apply this discussion to interpretation
of high-field transport phenomena in other chalcogenides
and their alloys in which the valence band is formed by
lone-pair states. A prominent example is an electronic
switching observed in a variety of crystalline and non-
crystalline chalcogenide semiconductors [30]. For instance,
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studies of the current–voltage characteristic for amorphous
Ge2Sb2Te5 show an abrupt transition from a low-conducting
to a high-conducting state while passing over some critical
value of the bias [5]. Analyzing these data, Pirovano et al [5]
suggested the impact ionization of holes as a possible cause for
the observed switching between two conducting states, which
has also been supported by later theoretical studies [6]. In light
of the preceding discussion, we can attribute a dominant p-type
conductivity [31] and the avalanche of holes in these materials
to the weak electron–phonon interaction inherent to lone-pair
states.

4. Conclusion

Since the lone-pair states are not involved in bonding, their
response to the volume deformation associated with acoustical
phonons is low compared to the conduction band formed by
anti-binding states. We preliminarily link these results with
the favorable high-field transport of holes in chalcogenide
semiconductors corroborated by experimental observations
of impact ionization in amorphous selenium and electronic
switching in Ge–Sb–Te alloys. However, in order to make
this conclusion unambiguous, more detailed study is necessary,
which will include optical phonons, effects of the density of
states and a wavefunction overlap on the matrix element for
electron–phonon coupling.
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