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Exact Solution for Hopping Dissociation of Geminate Electron-Hole Pairs in a Disordered Chain
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A universal theoretical description of the dissociation problem for electron-hole pair on a one-
dimensional chain in the hopping regime is proposed. Widely used results of Frenkel and Onsager
theories are obtained as particular cases of the general solution. The application of the analytical theory to
disordered chains shows that disorder enhances dissociation of geminate electron-hole pairs at low electric

fields and suppresses at high fields.
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The problem of the dissociation of geminate electron-
hole pairs and the problem of injection of electrons into
semiconductor out of a metallic contact are among the
most often discussed topics in the field of disordered
systems, particularly organic disordered materials [1-4].
The central question in both cases is how electrons escape
from the Coulomb potential well via a series of noncoher-
ent hopping transitions between spatially localized states.
In the case of pair dissociation, the Coulomb potential is
created by the geminate hole, whereas, in the case of
electron injection, the potential is created by the image
charge within the metallic contact. A solution of the dis-
sociation and injection problems is of vital importance for
the physics of molecular solar cells, organic light emitting
diodes, polymer field effect transistors, and other optoelec-
tronic molecular devices.

Experimental and theoretical studies are usually focused
on the effect of the external electric field on the efficiencies
of the dissociation and injection [5—14]. Field dependence
of the dissociation efficiency of geminate electron-hole
pairs is typically interpreted in terms of Onsager [15] or
Frenkel [16] theories. Frenkel [16] treated escape of charge
carriers from the Coulomb potential well in a rather sim-
plified way considering a one-step process, the rate of
which is determined by thermal activation over the
Coulomb barrier, which itself is lowered by the external
electric field £. In the case of excitons, the escape process
competes with the exciton recombination, the rate of which
is determined by the inverse exciton lifetime 7, !. Such a
formalism yields the field dependence of the exciton dis-
sociation efficiency in the form [17]

E, - B\/E>j|l’ W
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where v, is the attempt-to-escape frequency, E, is the
exciton binding energy, kp is the Boltzmann constant, T
is the temperature, and 8 = (¢3/mee,)'/? in which e is the
elementary charge, € is the dielectric constant, and € is the
permittivity of vacuum.

Onsager’s theory [15] of geminate pair dissociation
offers a more rigorous solution of the problem, in which
an electron-hole pair is generated with some initial sepa-
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ration x, and one of the carriers undergoes subsequent
diffusion and drift in the Coulomb potential modified by
the external electric field. The disadvantage of the original
formulation is that the recombination was assumed to
occur instantaneously as soon as the traveling charged
particle arrives at the site occupied by the recombination
partner. This assumption is, however, not applicable to
molecular solids where the exciton recombination time is
of the order of nanoseconds. Hong and Noolandi [18]
solved the problem with modified boundary conditions in
order to account for the partial absorption at the origin and,
thus, for the finite recombination time. This yields the
following expression for the electron-hole pair dissociation
efficiency in the case of one-dimensional systems [18]:

(5):(D/v)exp(—Eb/kBT)+ o explE(x,E)/kpT]dx
TN D Jv)exp(—Ey [ksT) + [ explE(x, €) [k Tldx’
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where D is the diffusion coefficient, v is the recombination
velocity, and the potential profile is given by E(x, &) =
—e?/4meeyx — eEx for x > 0.

It is worth noting that the results of Frenkel and Onsager
do not include disorder effects. However, charge transport
in amorphous organic semiconductors is characterized by
disorder in the positions and energy levels of single mole-
cules, which causes the spatial localization of the electron
states [19]. As a result, the primary transport mechanism in
such solids is the incoherent hopping of localized charge
carriers between molecular sites [19,20]. So far, the most
reliable approach for modeling dissociation processes in
disordered solids is Monte Carlo computer simulations
[10,13,21].

In our work we present a general analytical solution for
the dissociation problem in the hopping transport mode.
The aim is to describe analytically the field-dependent
dissociation probability of a geminate electron-hole pair
taking into account not only the Coulomb potential but also
the disorder leading to the distribution of local transition
rates and site energies. The model is solved exactly, and the
dissociation probability is obtained as a function of the
particular transition rates between hopping sites, of the
recombination rate, and of the particular energies of local-
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FIG. 1. One-dimensional chain of n hopping sites with asym-
metry in transition rates.

ized states. The results of Frenkel and Onsager [Eqgs. (1)
and (2), respectively] turn out to be asymptotic forms of the
general solution in the absence of disorder. As an example
we consider electron-hole dissociation at the interface
between donor and acceptor phases and show that the
disorder promotes dissociation at low and intermediate
electric fields and suppresses at high fields, which is in
agreement with results of the computer simulation reported
earlier [13,21].

Model. —We treat the following recombination model.
An electron executes a nearest-neighbor random walk on a
one-dimensional chain of hopping sites as schematically
shown in Fig. 1. The transition rate a; from site j to j + 1
depends on the spatial separation r; between the sites and
on the site energies according to [22]

E"). 3)
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The backward transition rate from site j + 1 to j is given
by the product a;b;, where b; = exp[(E;+; — E;)/kgT] is
the asymmetry factor. The electron can recombine with the
hole fixed at the origin (site 0) only via transition from
site 1. The rate of the latter process is 7, L provided there is
no separation between sites 0 and 1. Otherwise, 7, should
additionally include an exponential term responsible for
tunneling. The time evolution of the particle density at site
j is determined by the set of rate equations
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where §;; is Kronecker’s symbol and G; = g(0;; repre-

sents the generation rate implying that the electron can
start its random walk at an arbitrary site i.

We are searching for the stationary solution of Eq. (4)
with the boundary condition corresponding to full absorp-
tion on site n. The probability for the recombination is
determined by the relative ratio of the recombination and
generation fluxes

fi
To80
Then the probability of recombination is given by
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According to the definition of the asymmetry factors b,
the products in Eq. (6) reduce to a simple exponential term
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Substituting Eq. (7) into Eq. (6) and using the property 3 +
1 = 1 we obtain the dissociation probability as a function
of transition rates, recombination rate, and energies of
localized states
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This general equation is the main result of our contribution.
It shows that the dissociation probability is determined by
the sum of inverse transition rates weighted by the
Arrhenius term with the potential value at a particular
hopping site taken relative to the potential value at the
recombination site. For instance, in the case of the
Coulomb potential combined with an external electric
field, transitions at the hump of the potential barrier have
a dominant impact on the dissociation probability and not
transitions in the close proximity to the hole as it is some-
times believed [4].

Asymptotics.—Let us now consider important asymp-
totic forms of the general solution and compare them with
the known theoretical results—Frenkel and Onsager theo-
ries. In order to compare our solution with the Onsager
theory, we consider electron diffusion on a regular semi-
infinite chain of hopping sites with separations ry. The
starting point is chosen at an arbitrary site i € Z* and all
forward transition rates between neighboring sites are
equal to ay. To fulfil this condition, one has to assume
the spatial separation r, between hopping sites as infinitely
small, so that energy differences between neighboring sites
are much less than k3 7. The potential is assumed to be not
divergent with the value E; at the origin. The boundary
conditions correspond to the partial recombination at the
origin with the rate 7, ! and complete absorption at infinity.
Under such circumstances, Eq. (8) yields the dissociation
probability

n(€=1- 5 (5) =y ®

agro exp(E, /kpT) + Y'Z} exp(E;/kpT)
agTo exp(E, /kpT) + 3% exp(E;/kpT)

This expression is identical to the Onsager dissociation
probability given by Eq. (2), provided the diffusion coef-
ficient and the recombination velocity are replaced by D =
apry and v = ry/ 7, respectively, and the summation in
Eq. (9) is replaced by integration.

In order to compare our general solution with the
Frenkel theory of exciton dissociation, we consider the
situation where an electron starting at the origin executes
a random walk in the combined potential created by the
hole and by the external electric field. The corresponding
dissociation probability determined by Eq. (9) reduces to
the form

ToN = ©)
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where E;/kgT =—C/(j—1)—B(j—1) with C=
e?/dmeeykgTry and B = eEry/kpT. A further simplifica-
tion of Eq. (10) can be achieved if we replace the sum by an

integral (Ref. [23], p. 307),
|
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where K (x) is the modified Bessel function of the second
kind, which has two asymptotic forms

K,(2V/CB) =~ {[ﬁﬂ(CB)”“] exp(—2+/CB) if 24/CB > 1 1)

1/2+/CB

corresponding to the high- and low-field limits, respec-
tively. Combining Eqgs. (10) and (11) with the high-field
asymptotic form of Eq. (12) we obtain the field dependence
of the exciton dissociation probability in the form

np(€) = [1 + (Toao)_l<%>l/4 exP(%ﬁ/zﬂl,
(13)

where (3 is the same as in Eq. (1). This result is identical to
that of Frenkel [Eq. (1)], in spite of the fact that we
consider the electron overcoming the Coulomb barrier in
a diffusive manner instead of the single step as it was
originally suggested by Frenkel [16]. The only difference
between Eqs. (1) and (13) is the term (72C/B?)!/*, which
accounts for the diffusive character of the motion of the
electron. This correction term is field- and temperature-
dependent and proportional to T'/2£73/4, However, it only
weakly affects the main field dependence of the dissocia-
tion probability, which is governed by the exponential term
in Eq. (13).

At low fields, Egs. (10)—(12) yield a linear dependence
for the exciton dissociation probability on the magnitude of
the applied electric field

(&) = agro(e€ro/kyT) exp(E, /kgT). (14)

The crossover from the exponential to linear field depen-
dence of the exciton dissociation probability—Eqgs. (13)
and (14), respectively—takes place at 2./CB ~ 1,i.e., £ ~
(kgT/B)?. At room temperature for a material with the
dielectric constant of 3.5, the corresponding electric field is
of the order of 4 kV/cm. Experimentally, the linear de-
pendence of the dissociation probability was reported for
anthracene single crystals at fields of the order of
10 kV/cm [24].

Effect of disorder.—In molecular solids, the disorder
shows up in fluctuations of the spatial positions and energy
levels of transport states. These fluctuations result in a
distribution of the transition rates between hopping sites,
which are explicitly included in our model. As an example,
we consider the field-assisted exciton dissociation at the
interface between donor and acceptor phases, which are
often used in solar cells in order to facilitate dissociation of
photogenerated excitons. The structure of the interface and
the relevant processes are illustrated in Fig. 2.

if 0<2JCB K 1,

[

We assume the mobility of electrons in the acceptor
phase to be much lager than the mobility of holes in the
donor phase. Therefore, we consider the hole trapped at the
interface, and the electron undergoing a random walk in
the Coulomb potential modified by the external electric
field. Disorder is modeled in the following way. The posi-
tion of the jth localized state for the electron is given by
Xj = roj + 28r§, where &r is the maximal deviation of the
site position from its ordered value, and ¢ is a random
number with a uniform distribution in the range between
—0.5 and 0.5. The origin of the spatial axis is set at the
position of a hole, i.e., x, = 0. The spatial separation
between the adjacent sites is given by r; = x4 — x;.
Because electrons and holes are spatially separated, the
recombination probability includes the tunneling term and
has the form 7, = 7., exp(2ry/ @), where 7., is the exciton
radiative lifetime. The energies of the sites are determined
by

e2

E; = E?(o-) - — efx;, (15)

dmeenx;
which includes the intrinsic energetic disorder. Here,
E?((r) is a random number chosen from a Gaussian distri-

bution with zero mean value and standard deviation o,
which determines the scale of the energetic disorder.
Transition rates between sites are determined by the
Miller-Abrahams hopping rates [Eq. (3)]. Once the hop-
ping rates and energies are known, the dissociation proba-
bility is readily calculated using Eq. (8). In the case of
disorder, the dissociation probability is averaged over 10*
realizations. The dissociation is considered as occurred,
when the separation between carriers exceeds the Onsager
radius, i.e., when the Coulomb binding energy of the
electron-hole pair is less than the temperature.

The field dependence of the dissociation probability at
the interface between donor and acceptor phases is shown
in Fig. 3 for different cases (with and without disorder)
assuming typical values of the material parameters in
organic semiconductors [19]. Note that the range of fields
shown in Fig. 3 corresponds to much higher values than
those corresponding to the applicability of Eq. (14). In the
absence of disorder, the field dependence of the dissocia-
tion probability coincides with the simple Frenkel result.
Apparently, the disorder makes the dissociation probability
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FIG. 2. Energy level diagram illustrating the exciton breaking
at the interface between the donor and acceptor phases (1) and
subsequent field-assisted dissociation (2) of the electron-hole
pair in the Coulomb potential modified by the external electric
field. The dissociation competes with recombination via tunnel-
ing (3).

less sensitive to the value of the electric field. This result is
really remarkable. Thus far the dissociation problem has
been studied in straightforward computer simulations for
disordered systems and the following result has been ob-
tained [21]. Computer simulations provide an essentially
smoother field dependence of the dissociation probability
as compared to the analytical theories for ordered systems
with initial parameters equal to those taken in the simula-
tions. In order to fit the results of the simulations with
analytical theories, which do not contain disorder, one
needed to insert into these analytical theories initial pa-
rameters essentially different from those really used in the
simulations [21]. Our exact calculations on the basis of
Eq. (8) shown in Fig. 3 demonstrate that in the case of
disorder the field dependence is smoother as compared to
the ordered system, which resolves the puzzle with the
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FIG. 3. Exciton dissociation probability as a function of exter-
nal electric field calculated including positional (6r # 0) and
energetic (o # 0) disorder. “Approximate” refers to Eq. (13)
with E, /kzgT = —(C + B).

necessity to insert wrong initial parameters into the ana-
Iytical theories for ordered systems in order to get agree-
ment with simulation results in the case of disorder.

In conclusion, we proposed a general analytical solution
for the field-assisted dissociation of a geminate electron-
hole pair on a chain of hopping sites. For ordered chains,
the limiting cases yield the famous results of Frenkel and
Onsager. The energetic disorder, as well as its combination
with the positional disorder, promotes dissociation at low
electric fields and suppresses it at high fields.
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