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Kinetics of the energy transfer and the corresponding photoluminescence decay at selected photon
energies in disordered semiconductors are studied theoretically. The authors show a straightforward
way to arrive analytically at the solutions for the spectral and time dependences of the
photoluminescence decay within a model based on the interplay between the radiative
recombination and hopping energy relaxation of localized excitons. The theory is supported by
comparison with experimental data, which yields valuable information on major properties of
disorder in the underlying structures. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2755927]

Time-resolved spectroscopy is a powerful technique that
is being extensively used to study the recombination kinetics
particularly in disordered semiconductors such as -V,
1I-v nitride,S’4 and I1I-V dilute nitride heterostructures.”” In
these structures, the low-temperature photoluminescence
(PL) is primarily dominated by recombination of localized
excitations.* ' The common feature of time-resolved PL
data is a strong dependence of the PL decay on the photon
energy, in particular, at initial times after the pulsed excita-
tion: the higher the detection energy, the shorter is the decay
time. This gives evidence to the energy transfer of optical
excitations from shallow bound states in the pseudogap to
the states with greater localization energy. A rough theoreti-
cal description of the spectral dependence of the PL decay
has been given by Gourdon and Lavallard'' on the basis of a
phenomenological model of hopping end recombination of
localized excitons.®!'? In this letter, we improve the former
theory and obtain an analytical expression for the spectral
dependence of the PL decay, which takes into account basic
properties of disorder and localization as well as the delay
time after the pulsed excitation. This significantly extends
the range of applicability of the theory and gives an addi-
tional opportunity for the experimental verification of the PL
mechanism.

The widely accepted model of the PL in semiconductors
with an essential amount of disorder can be formulated as
follows. The luminescing entity is a correlated electron-hole
pair (exciton) trapped in a localized state in the pseudogap of
the studied structure.'? Such excitation can either recombine
radiatively producing a PL photon or it can hop into another
localized state. The interplay between these two grocesses in
the course of time determines the PL kinetics.®’ Following
these arguments, Gourdon and Lavallard"' proposed an ex-
pression for the spectral dependence of the PL decay in dis-
ordered semiconductors in the form

1§ (hw) = 1{1 + expl(hw - E,)/Eo]} ™, (1)

where 7 is the exciton radiative lifetime, E, is the energy
scale of an exponential band tail, and E,, is the energy at
which the radiative time equals the transition time to the
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states with deeper e:nergies.13 Equation (1) fits well experi-
mental dependences of the initial PL decay on the photon
energy. However, it cannot be considered as complete, since
none of the material parameters characterizing hopping pro-
cesses enter Eq. (1). Theoretical approaches were developed
that allow one to calculate the dynamics of the exciton ther-
malization either numericallym’15 or by the computer
simulation.'® However, even at zero temperature, detailed
calculation of the thermalization processes is a complex task,
which precludes a simple analytical solution. Our aim is to
find such a description for the spectral dependence of the PL
decay time, which is at the same time sufficiently simple and
sufficiently accurate.

Now we introduce assumptions that will allow us to ob-
tain both the energy and time dependences of the PL decay in
a simple mathematical form. First, we neglect feeding of the
low energy states due to the energy relaxation of excitons
from the localized states with higher energies. Such pro-
cesses can be ignored, unless the initial rise of the PL at its
low-energy tail is considered. Second, we use the greatest
rate approximation,12 which implies that the hopping transi-
tion occurs between the nearest neighbor states available.
This approximation is justified, provided the transition rates
have a broad distribution, which is the case of hopping rates.
Third, we assume the exciton density to be sufficiently low,
so that the band tail states can be considered as unoccupied.
This regime can be achieved at low pump intensities.

According to the model, electrons and holes generated
by a pulsed optical excitation form excitons, which are cap-
tured into localized states created by the disorder potential.
The initial relaxation processes within a band are viewed as
instantaneous, and the origin of time is taken to be the mo-
ment of the exciton capture. We focuss on the case of low
temperatures, when a trapped exciton loses its energy via
energy-loss hopping between localized states. The PL decay
is thus determined by the interplay between the radiative
rate, 7'51, and the hopping rate v(r); the latter has a broad
distribution due to the distribution of hopping distances r.
Assuming the hopping transition to occur via phonon-
assisted tunneling between localized states, the PL decay at
energy E=hw—Eyg relative to the exciton mobility edge
(ME) can be written as' >’
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I(E,1) = (COIlSt)e_t/TOj p(r,E)exp(— tvye™>")dr, (2)
0

where p(r,E) is the distribution of hopping distances, « is
the decay length of the localized exciton center-of-mass
wave function, and v, is the phonon-related attempt-to-
escape frequency.

We assume uncorrelated disorder in the sense that the
spatial positions and energies of localized states are random.
Then the distribution of hopping distances is a nearest-
neighbor  distribution,  which is  p(r,E)=27N(E)r
Xexp[-7N(E)r*] in two-dimensional (2D) case or p(r,E)
=47N(E)r? exp[-47N(E)r*/3] in three-dimensional (3D)
case. Here, N(E) is the density of states available for the
hopping transition. Since we limited our theory to low tem-
peratures (excitons can only lose their energy via hopping),
the localized states available for the hopping transitions are
those below energy E, and their density is given by

E

NE)= | g(E)dE, 3)

—o0

where g(E) is the energy distribution of localized states in
the band tail, which is a steep function of energy.

Further simplification of Eq. (2) can be achieved ap-
proximating the term exp(—tvye™>"®) by a step function,
since tvy>1 holds for all practical times. This yields in 2D

t
I(E,t) = (const)e"”of p(r,E)dr = (const)exp| — —
R(1) 70

- Rf(z)N(E)] : 4)

where R.=(a/2)In(tvy/1n 2).

In general, the PL time evolution at arbitrary ¢ can be
considered as an exponential decay I(¢)=1,exp[—t/t,(t)]
with a variable decay time ¢#;. Thus, the PL decay time is
given by the inverse logarithmic derivative of the PL signal,

d
o (Ef) =- d—t[ln I(E,1)]. (5)

The corresponding differentiation of Eq. (4) yields our main
result—expression for the PL decay time in terms of the
parameters of disorder, localization, interaction with
phonons, and delay time

7N(E)a? ( ty )
—— In| —|.
2t In2

L ED =1+ (6)
The inverse decay time given by Eq. (6) is composed of
two terms: the radiative decay rate and the effective hopping
escape rate. The latter is a decreasing function of time, since
in the course of time more and more distant pairs of localized
states contribute to the hopping rate. Comparison of Egs. (1)
and (6) shows that both expressions have the same energy
dependence governed by N(E), though the rest of the
hopping-related term is completely different.

Next, we justify Eq. (6) by comparison to results of the
full kinetic Monte Carlo (KMC) simulation performed using
the algorithm suggested by Baranovskii et al.'® The advan-
tage of the computer simulation is that its algorithm takes
into account all stochastic processes, which are natural for
dynamics of recombining excitons. For this purpose, we cal-
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FIG. 1. Zero-temperature time-integrated PL spectrum and spectral depen-
dence of the PL decay time at various delays after the pulsed excitation. PL
decay times are calculated according to Eq. (6) and by performing full KMC
computer simulation.

culate the energy spectrum of the PL decay time at various
delays after the pulsed excitation taking the material param-
eters appropriate for III-V dilute nitride heterostructures. In
the calculation, we assume an exponential energy distribu-
tion of localized states,

g(E) = (N/Ey)exp(E/E,), (7)

where N, is the areal density of localized states, and E is the
characteristic energy scale, which is about 10 meV.""" For
the other parameters, we take the values v,=10"s7!, 7
=107 s, and N,a?=0.5."%2°

Spectral dependences of the PL decay times calculated
using the two alternative approaches are shown in Fig. 1
along with the time-integrated PL spectrum obtained from
the KMC simulation. The primary feature of Eq. (6) is that it
enables to calculate kinetics of the PL decay time, instead of
focusing on some initial times as in the earlier theory.Il
Therefore, we show in Fig. 1 the results obtained at various
time slices. The analytical results match well the simulation
data, that confirm the confidence of Eq. (6). The results show
both the strong energy and time dependences of the PL de-
cay. The decay times spread over the range from picoseconds
to nanoseconds for the states contributing to the high-energy
part of the PL spectrum. The distribution of decay times gets
narrower for the lower photon energies or longer delays, un-
til the PL decay time finally approaches the radiative lifetime
To= 10 s. In the simulation, however, the decay times
longer than the radiative lifetime are observed (see Fig. 1, ¢
=107 s). This is due to the feeding disregarded in the ana-
Iytical model.

Finally, we verify our theory by comparison to the ex-
perimental data for spectral dependence of the initial PL de-
cay time measured by Vinattieri er al.® on Ga(NAs)/GaAs
quantum wells. Since the energy position of the exciton mo-
bility edge was experimentally not determined, for the fitting
procedure we locate it at!
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FIG. 2. Spectral dependence of the initial PL decay time measured by Vi-
nattieri ef al. (Ref. 6) on Ga(NAs)/GaAs quantum wells at 7=10 K and the
theoretical results calculated according to Eq. (6) assuming the exponential
density of localized states [Eq. (7)]. Arrows indicate the position of the
measured PL peak energy, E,. and of the exciton mobility edge, Ey,
calculated according to Eq. (8).

Enie = Engs + Eo In[(mN,@?/4)10(ryw)]. (®)

where E,_,, is the peak energy of the time-integrated PL
spectrum. Due to the uncertainty in the exact position of the
exciton mobility edge, it is not possible to determine the
product N,a? unambiguously, and, thus, we assume as above
N,a?=0.5. Experimental data and the corresponding theoret-
ical fits are shown in Fig. 2. Quantitative agreement with the
experiment is achieved for the physically reasonable param-
eters: 1p=1.4 ns, Ey=11 meV, and t=40 ps for the sample
with the nitrogen content of 0.012, and 7y=1.1 ns, E,
=10 meV, and =120 ps for the sample with the nitrogen
content of 0.016. The attempt-to-escape frequency vy
=10 57! is assumed to be the same for both samples. It is
worth mentioning, that the disorder energy scale E|, extracted
from the fit appears in the typical range (5—15 meV) for
1I-V dilute nitride heterostructures.'”*!

The real challenge for the model will be to explain quan-
titatively both the spectral and time dependences of the PL
decay using the same set of parameters. In order to adjust the
model to a particular experimental situation, Eq. (6) can be
easily modified for the 3D case and/or for another transfer
mechanism, e.g., for Foster (dipole-dipole) hopping. In the
case of tunneling, the proportionality #,° ¢ can be anticipated
[see Eq. (6)] independently of the space dimensionality for
detection energies in the high-energy part of the PL spectra
and relatively short times (<< 7). In the case of Foster hop-
ping, weaker time dependences of the PL decay are
achieved: 7yoct*® and t,¢'3 in 2D and 3D cases, respec-
tively. It would be interesting to check this experimentally.

In conclusion, we proposed an analytical expression,
which describes the spectral dependence of the PL decay
time at low temperatures, assuming that the photolumines-

Appl. Phys. Lett. 91, 021903 (2007)

cence is determined by the interplay between hopping and
radiative recombination of localized excitons. In contrast to
the previous theoretical studies, our approach includes the
details of the transition mechanism between localized states
and allows one to calculate the PL decay time at various
delays after the pulsed excitation. Decay times of PL calcu-
lated analytically are in good agreement with experimental
results on Ga(NAs)/GaAs quantum wells and with the re-
sults of the numerical simulation. The disorder energy scale
Ey=~10 meV and the exciton radiative lifetime 7y~ 1 ns are
determined from the fit to the experimental data.
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