Electronic Localization in Semiconductor Alloys

Oleg Rubel & Christopher Pashartis

Department of Materials Science and Engineering

McMaster University

DFT 2017

17th International Conference on Density-Functional Theory and its Applications Tällberg (Dalarna) Sweden | August 21st – 25th 2017

Semiconductor alloys

EMC-59, South Bend 2017

Low temperature photoluminescence

Ga_{1-x}In_xAs

Fig. 3. Low temperature luminescence spectra of (GaIn)As bulk layers grown by using different As sources as indicated in the inset. The spectrum of the layer grown by using DEtBAs is magnified by a factor of 200.

 GaN_xAs_{1-x} $GaBi_xAs_{1-x}$

Appl. Phys. Lett. 94, 011907 (2009)

Inhomogeneous broadening: intrinsic or extrinsic?

Band structure

Silicon 2-atom basis

Silicon 250-atom supercell

EMC-59, South Bend 2017

Unfolding the first-principle band structure

Plane wave expansion

$$\Psi_{n,\mathbf{K}}(\mathbf{r}) = \sum_{\mathbf{G}} C_{n,\mathbf{K}}(\mathbf{G}) e^{i(\mathbf{K}+\mathbf{G})\cdot\mathbf{r}}$$

README.md

fold2Bloch

Unfolding of first-principle electronic band structure obtained with WIEN2k DFT-(L)APW code

Si

Contributors:

- Anton Bokhanchuk
- Elias Assmann
- Sheikh Jamil Ahmed
 Oleg Rubel

Bloch spectral weight

$$w_n(\mathbf{k}) = \sum_{\mathbf{g}} |C_{n,\mathbf{K}}(\mathbf{k} + \mathbf{g})|^2$$

Popescu & Zunger: Phys. Rev. Lett. **104**, 236403 (2010)

Rubel *et al.* Phys. Rev. B **90**, 115202 (2014)

Thermoelectric material: Si0.7Ge0.3

Ino.53Gao.47As/InP

0 2.5 2.0 0.8 0 1.5 0 Spectral weight 000 Energy (eV) 0 0 0.6 1.0 0.5 0.4 0.0 -0.5 0.2 -1.0 0 G Х Wave vector

Well preserved Bloch character of the band edges (no localization)

128-atom random alloy models

In_{0.41}Ga_{0.59}N_{0.03}As_{0.94}Sb_{0.03}/GaAs

Characteristics of electronic localization in semiconductor alloys

GaAs_{0.89}Bi_{0.11}/GaAs

Localization of holes is expected

9

Inverse participation ratio (IPR)

Definition:
$$IPR(E_i) = \frac{\sum_{\alpha} \rho_{\alpha}^2(E_i)}{\left[\sum_{\alpha} \rho_{\alpha}(E_i)\right]^2}$$
 IPR = I/N_{atoms} (no localization)
IPR = I (extreme localization)

Wegner, Z Physik B **36**, 209 (1980) Murphy *et al.*, Phys. Rev. B **83**, 184206 (2011)

(Hg,Cd)Te band structure evolution

EMC-59, South Bend 2017

Characteristics of electronic localization in semiconductor alloys

Impact of alloying disorder on charge transport

 $CdTe \rightarrow (HgCd)Te$

 $GaAs \rightarrow Ga(AsBi)$

$$\mu_{\rm h} = 200 \rightarrow 10 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$$

 $\mu_{\rm e} = 4,000 \rightarrow 2,500 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

13

EMC-59, South Bend 2017

 $\mu_e = 1,100 \rightarrow 1,000,000 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

Summary

		5	6	7	8	9
		B	C	Ν	0	F
		Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032
		13	14	15 🔺	16	17
		Al	Si	P	gap one row	
		Aluminum 26.981538	Silicon 28.0855	Phosphoru 30.973761	Sulfur 32.066	Chlorine 35.4527
	30	31	32	33	34	35
	Zn	Ga	Ge	As	Se	Br
	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904
	48	49	50	51	52	53
	Cd	In	Sn	Sb	Te	Ι
	Cadmium 112.411	Indium 114.818	^{Tin} 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447
	80	81	82	83	84	85
	Hg	TI	Pb	Bi	Po	At
,	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)

- (HgCd)Te
- (InGa)As
- (InGa)(NAsSb) disorder in the conduction band due to electronegative N
- Ga(AsBi) disorder in the valence band due to electropositive Bi

Further reading:

- Phys. Rev. B 90, 115202 (2014)
- Phys. Rev. Applied 7, 064011 (2017)
- Comp. Phys. Commun. 205, 106 (2016)
- Phys. Rev. B **93**, 205202 (2016)
- arXiv:1508.03612
- arXiv:1707.04625

Acknowledgement

Christopher Pashartis (McMaster)

Anton Bokhanchuk (TBRRI/Conf. College)

Elias Assmann

(TUVienna/Uni Graz)

Sheikh J.Ahmed (McMaster/LU/TBRRI)

Marek Niewczas (McMaster)

B README.md

fold2Bloch

Unfolding of first-principle electronic band structure obtained with WIEN2k DFT-(L)APW code

Contributors:

- Anton Bokhanchuk
- Elias Assmann
- · Sheikh Jamil Ahmed
- Oleg Rubel

Financial support:

